Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Environ Au ; 2(5): 455-466, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36164351

RESUMEN

Omni Processors (OPs) are community-scale systems for non-sewered fecal sludge treatment. These systems have demonstrated their capacity to treat excreta from tens of thousands of people using thermal treatment processes (e.g., pyrolysis), but their relative sustainability is unclear. In this study, QSDsan (an open-source Python package) was used to characterize the financial viability and environmental implications of fecal sludge treatment via pyrolysis-based OP technology treating mixed and source-separated human excreta and to elucidate the key drivers of system sustainability. Overall, the daily per capita cost for the treatment of mixed excreta (pit latrines) via the OP was estimated to be 0.05 [0.03-0.08] USD·cap-1·d-1, while the treatment of source-separated excreta (from urine-diverting dry toilets) was estimated to have a per capita cost of 0.09 [0.08-0.14] USD·cap-1·d-1. Operation and maintenance of the OP is a critical driver of total per capita cost, whereas the contribution from capital cost of the OP is much lower because it is distributed over a relatively large number of users (i.e., 12,000 people) for the system lifetime (i.e., 20 yr). The total emissions from the source-separated scenario were estimated to be 11 [8.3-23] kg CO2 eq·cap-1·yr-1, compared to 49 [28-77] kg CO2 eq·cap-1·yr-1 for mixed excreta. Both scenarios fall below the estimates of greenhouse gas (GHG) emissions for anaerobic treatment of fecal sludge collected from pit latrines. Source-separation also creates opportunities for resource recovery to offset costs through nutrient recovery and carbon sequestration with biochar production. For example, when carbon is valued at 150 USD·Mg-1 of CO2, the per capita cost of sanitation can be further reduced by 44 and 40% for the source-separated and mixed excreta scenarios, respectively. Overall, our results demonstrate that pyrolysis-based OP technology can provide low-cost, low-GHG fecal sludge treatment while reducing global sanitation gaps.

2.
Environ Sci Technol ; 54(24): 16017-16027, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33259189

RESUMEN

The colonias along the United States-Mexico border are generally self-built neighborhoods of low-income families that lack basic infrastructure. While some government assistance has provided roads and electricity, water and wastewater services are still lacking in many colonias. This research is the first to collect a comprehensive dataset on water, sanitation, health, and living conditions in these unincorporated neighborhoods through collection of water samples and surveys; 114 households in 23 colonias across three geographically diverse Texas counties are studied. Water quality is assessed via traditional microbial indicators, chlorine, and arsenic. This complex dataset requires an advanced statistical tool to disentangle relationships among diverse factors. Structural equation modeling is utilized to identify relationships among surveyed and measured variables. The model reveals that colonias residents with well/hauled water accurately predict their water quality, while those with treated+piped water tend to think that their water is worse than it actually is. Dwelling quality and connection to sanitary sewers influence perceived health risks and household health, respectively. Furthermore, these communities have an overwhelming need and desire for point-of-use water treatment. This model can inform decision making and may be adapted to probe other questions and social dynamics for water and sanitation in unincorporated communities elsewhere.


Asunto(s)
Saneamiento , Agua , Composición Familiar , Humanos , México , Características de la Residencia
3.
Sci Total Environ ; 736: 139690, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32504867

RESUMEN

Microplastic particles and fibers are increasingly being detected in our surface and ground waters as well as within a wide range of aquatic species. Their presence in the environment is largely due to in situ generation from physical and chemical weathering of larger plastics, and thus has left environmental community concerned in the post-banned era of microbead use in personal care products through the passage of Microbead-Free Waters Act in the United States. To improve understanding of secondary microplastic formation, accelerated weathering has been conducted on four materials (high-density polyethylene, high impact polystyrene, nylon 6, and polypropylene) under ultraviolet radiation (equivalent to 44 days in full sun) in simulated seawater. Physical and chemical characterization of the plastics were completed following ultraviolet exposure. This simulated weathering generated microfibers from high-density polyethylene and nylon 6, while high impact polystyrene and polypropylene did not physically degrade. The techniques used were applied to sediment samples containing plastic pellets collected from Cox Creek in Port Comfort, TX (near a large plastics manufacturer), which were purified for analysis and were found to contain microplastics composed of polypropylene and polyethylene. These findings can be used to determine degradation pathways and plastic source tracking, which can facilitate risk assessment and environmental management.

4.
Annu Rev Chem Biomol Eng ; 11: 559-585, 2020 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-32259463

RESUMEN

Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.g., wastewater, seawater, and produced water) is considered in the context of typical and emerging water quality goals. This review considers the effectiveness of current technologies (both conventional and membrane based), as well as the potential for recent advancements in membrane research to achieve these water quality goals. We envision the future of water treatment to integrate advanced membranes (e.g., mixed-matrix membranes, block copolymers) into smart treatment trains that achieve several goals, including fit-for-purpose water generation, resource recovery, and energy conservation.


Asunto(s)
Purificación del Agua/métodos , Agua/química , Conservación de los Recursos Naturales , Membranas Artificiales , Metales Pesados/química , Nutrientes/química , Sales (Química)/química
5.
Environ Int ; 137: 105586, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086082

RESUMEN

Cannabinoids are incipient contaminants with limited literature in the context of water treatment. With increasing positive public opinion toward legalization and their increasing use as a pharmaceutical, cannabinoids are expected to become a critical class of pollutant that requires attention in the water treatment industry. The destructive removal of cannabinoids via chlorination and other oxidation processes used in drinking water and wastewater treatment requires careful investigation, because the oxidation and disinfection byproducts (DBPs) may pose significant risks for public health and the environment. Understanding transformation of cannabinoids is the first step toward the development of management strategies for this emerging class of contaminant in natural and engineered aquatic systems. This perspective reviews the current understanding of cannabinoid occurrence in water and its potential transformation pathways during the passage through drinking water and wastewater treatment systems with chlorination process. The article also aims to identify research gaps on this topic, which demand attention from the environmental science and engineering community.


Asunto(s)
Cannabinoides , Contaminantes Químicos del Agua , Purificación del Agua , Cannabinoides/química , Desinfección , Halogenación , Aguas Residuales
6.
Sci Total Environ ; 711: 134450, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812391

RESUMEN

The availability of safe water for potable purposes in Alaska Native communities is limited due to naturally occurring metals and contaminants released from anthropogenic activities, such as drilling and mining. The impacts of climate change are magnified in the arctic and sub-arctic regions and thus have the potential to mobilize contaminants and exacerbate the water contamination problem. Alaska Native communities are vulnerable to such changes in their water quality because of their remote location and limited access to resources. This study initiates an assessment of water quality, including its microbial ecology, in off-the-grid Alaskan water supplies (i.e., primarily groundwater wells). In particular, water quality data were collected from nine communities (22 ground water wells). Water quality analyses included basic water quality parameters, a suite of metals relevant to human health, and microbial community composition. Results revealed location-specific elevated arsenic concentrations based on the underlying geological formation, particularly in the areas located in the geological formation of the McHugh Complex. Diverse microbial communities were observed, and the grouping appeared to be based on elevation. These findings present evidence of compromised water quality in an understudied area in the United States. The results from this study should be considered as a snapshot in time, which highlight the importance for further systematic studies in similar off-the-grid communities.


Asunto(s)
Agua Subterránea , Regiones Árticas , Humanos , Estados Unidos , Calidad del Agua , Abastecimiento de Agua
7.
Sci Total Environ ; 670: 1140-1145, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31018430

RESUMEN

Fate and transport of carbon nanomaterials can be strongly dependent on the interaction with secondary particulates in the aquatic systems. Bio-particulates in water, e.g., viruses with charged and hydrophobic surface moieties, may profoundly influence the interfacial behavior and hence the environmental fate of nanomaterials (and vice versa). This study systematically evaluates the interfacial interaction of acid-functionalized multiwalled carbon nanotubes (MWNTs) with MS2 bacteriophages, or heteroaggregation behavior of these particulates, under mono- and di-valent cations and with Suwannee River humic acid (SRHA). Results indicate that the highest concentration of MS2 (i.e., MWNT:MS2 of 100:1) renders exceptional stability of MWNTs, even in high salinity conditions. However, at lower MS2 concentrations (i.e., MWNT:MS2 of 1000:1 and 10,000:1), the suppression of MWNT heteroaggregation rate is not as significant. The observed enhanced stability is likely caused by the preferential attachment of the MS2 capsids onto MWNT surfaces, which is mediated by electrostatic attraction (between negatively charged oxygen-containing moieties on MWNTs and positively charged amino acid residues on MS2 surfaces) and/or by MS2 capsids with positive hydropathy index (indicating strong hydrophobicity). Presence of SRHA also shows stability enhancement; however, at lower MS2 concentrations, SRHA dominated the heteroaggregation behavior. These results implicate that preferential interaction between virus capsids (i.e., MS2 and may be other waterborne viruses) and carbonaceous nanomaterials may influence environmental transport of both in aquatic environments.


Asunto(s)
Sustancias Húmicas/análisis , Levivirus/efectos de los fármacos , Nanotubos de Carbono/efectos adversos , Ríos/química , Contaminantes Químicos del Agua/efectos adversos , Florida
8.
Sci Total Environ ; 622-623: 626-634, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29223086

RESUMEN

Compromised water quality risks public health, which becomes particularly acute in economically marginalized communities. Although the majority of the clean-water-deprived population resides in Sub-Saharan Africa and Asia, a significant portion (32 million) lives in Meso- and Latin-America. Oaxaca is one of the marginalized southern states of Mexico, which has experienced high morbidity from infectious diseases and also has suffered from a high rate of infant mortality. However, there has been a paucity of reports on the status of water quality of culturally diverse rural Oaxaca. This study follows community-based participatory research methods to address the data gap by reporting on water quality (chemical and microbiological) and by exploring social realities and water use practices within and among communities. Surveys and water quality analyses were conducted on 73 households in three rural communities, which were selected based on the choice of water sources (i.e., river water, groundwater, and spring water). Statistically significant variations among communities were observed including the sanitation infrastructure (p-value 0.001), public perception on water quality (p-value 0.007), and actual microbiological quality of water (p-value 0.001). Results indicate a high prevalence of diarrheal diseases, a desire to improve water quality and reduce the cost of water, and a need for education on water quality and health in all the surveyed communities. The complexities among the three studied communities highlight the need for undertaking appropriate policies and water treatment solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA