Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(2): 101251, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38745894

RESUMEN

Creatine deficiency syndromes (CDS), caused by mutations in GATM (AGAT), GAMT, and SLC6A8, mainly affect the central nervous system (CNS). CDS show brain creatine (Cr) deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy, and motor dysfunction. AGAT/GAMT-deficient patients lack brain Cr synthesis but express the Cr transporter SLC6A8 at the blood-brain barrier and are thus treatable by oral supplementation of Cr. In contrast, no satisfactory treatment has been identified for Cr transporter deficiency (CTD), the most frequent of CDS. We used our Slc6a8Y389C CTD rat model to develop a new AAV2/9-2YF-driven gene therapy re-establishing the functional Slc6a8 transporter in rat CNS. We show, after intra-cisterna magna AAV2/9-2YF-Slc6a8-FLAG vector injection of postnatal day 11 pups, the transduction of Slc6a8-FLAG in cerebellum, medulla oblongata, and spinal cord as well as a partial recovery of Cr in these brain regions, together with full prevention of locomotion defaults and impairment of myocyte development observed in Slc6a8Y389 C/y male rats. While more work is needed to correct those CTD phenotypes more associated with forebrain structures, this study is the first demonstrating positive effects of an AAV-driven gene therapy on CTD and thus represents a very encouraging approach to treat the so-far untreatable CTD.

2.
J Inherit Metab Dis ; 45(2): 278-291, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936099

RESUMEN

Creatine (Cr) is a nitrogenous organic acid and plays roles such as fast phosphate energy buffer to replenish ATP, osmolyte, antioxidant, neuromodulator, and as a compound with anabolic and ergogenic properties in muscle. Cr is taken from the diet or endogenously synthetized by the enzymes arginine:glycine amidinotransferase and guanidinoacetate methyltransferase, and specifically taken up by the transporter SLC6A8. Loss-of-function mutations in the genes encoding for the enzymes or the transporter cause creatine deficiency syndromes (CDS). CDS are characterized by brain Cr deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy, and motor dysfunction. Among CDS, the X-linked Cr transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different animal models of CTD show reduced brain Cr levels, cognitive deficiencies, and together they cover other traits similar to those of patients. However, motor function was poorly explored in CTD models, and some controversies in the phenotype exist in comparison with CTD patients. Our recently described Slc6a8Y389C knock-in rat model of CTD showed mild impaired motor function, morphological alterations in cerebellum, reduced muscular mass, Cr deficiency, and increased guanidinoacetate content in muscle, although no consistent signs of muscle atrophy. Our results indicate that such motor dysfunction co-occurred with both nervous and muscle dysfunctions, suggesting that muscle strength and performance as well as neuronal connectivity might be affected by this Cr deficiency in muscle and brain.


Asunto(s)
Enfermedades Cerebelosas , Creatina , Animales , Cerebelo/metabolismo , Guanidinoacetato N-Metiltransferasa/genética , Humanos , Proteínas de Transporte de Membrana , Músculos/metabolismo , Atrofia Muscular , Ratas , Síndrome
3.
Sci Rep ; 11(1): 1636, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452333

RESUMEN

Creatine is an organic compound used as fast phosphate energy buffer to recycle ATP, important in tissues with high energy demand such as muscle or brain. Creatine is taken from the diet or endogenously synthetized by the enzymes AGAT and GAMT, and specifically taken up by the transporter SLC6A8. Deficit in the endogenous synthesis or in the transport leads to Cerebral Creatine Deficiency Syndromes (CCDS). CCDS are characterized by brain creatine deficiency, intellectual disability with severe speech delay, behavioral troubles such as attention deficits and/or autistic features, and epilepsy. Among CCDS, the X-linked creatine transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different mouse models of CTD were generated by doing long deletions in the Slc6a8 gene showing reduced brain creatine and cognitive deficiencies or impaired motor function. We present a new knock-in (KI) rat model of CTD holding an identical point mutation found in patients with reported lack of transporter activity. KI males showed brain creatine deficiency, increased urinary creatine/creatinine ratio, cognitive deficits and autistic-like traits. The Slc6a8Y389C KI rat fairly enriches the spectrum of CTD models and provides new data about the pathology, being the first animal model of CTD carrying a point mutation.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Animales , Secuencia de Bases , Conducta Animal , Peso Corporal , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/patología , Creatina/sangre , Creatina/deficiencia , Creatina/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Genotipo , Humanos , Masculino , Memoria a Corto Plazo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Mutación Missense , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA