Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37037204

RESUMEN

Osteoclasts are the cells responsible for the bone resorption process during bone remodeling. In a healthy situation, this process results from an equilibrium between new matrix formation by osteoblast and matrix resorption by osteoclast. Osteoporosis (OP) is a systemic bone disease characterized by a decreased bone mass density and alterations in bone microarchitecture, increasing fracture predisposition. Despite the variety of available therapies for OP management there is a growing gap in its treatment associated to the low patients' adherence owing to concerns related with long-term efficacy or safety. This makes the development of new and safe treatments necessary. Among the newly developed strategies, the use of synthetic and natural nanoparticles to modulate osteoclasts differentiation, activity, apoptosis or crosstalk with osteoblasts have arisen. Synthetic nanoparticles exert their therapeutic effect either by loading antiresorptive drugs or including molecules for osteoclasts gene regulation. Moreover, this control over osteoclasts can be improved by their targeting to bone extracellular matrix or osteoclast membranes. Furthermore, natural nanoparticles, also known as extracellular vesicles, have been identified to play a key role in bone homeostasis. Consequently, these systems have been widely studied to control osteoblasts and osteoclasts under variable environments. Additionally, the ability to bioengineer extracellular vesicles has allowed to obtain biomimetic systems with desirable characteristics as drug carriers for osteoclasts. The analyzed information reveals the possibility of modulating osteoclasts by different mechanisms through nanoparticles decreasing bone resorption. These findings suggest that controlling osteoclast activity using nanoparticles has the potential to improve osteoporosis management. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Asunto(s)
Resorción Ósea , Nanopartículas , Osteoporosis , Humanos , Osteoclastos/fisiología , Resorción Ósea/tratamiento farmacológico , Osteoblastos/fisiología , Osteoporosis/tratamiento farmacológico , Nanopartículas/uso terapéutico , Diferenciación Celular
2.
Int J Pharm ; 624: 121973, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35811041

RESUMEN

Lipid-polymer hybrid nanoparticles are promising platforms in the field of targeted drug delivery, integrating the positive features of polymeric and lipid nanocarriers. However, the use of bulk procedures in lipid-polymer hybrid nanoparticles formulation is hindering their large-scale manufacturing. Therefore, the aim of this study is to explore the suitability of alternative formulation methods, such as microfluidics, to obtain surface-tunable nanoparticles displaying suitable characteristics. Formulations were prepared by single-step nanoprecipitation or using a micromixer chip. The nanocarriers were then surface-modified with an aptamer and an antibody, two common nanoparticle vectorization strategies, developing an optimized functionalization protocol. Both naked and surface-modified nanoparticles were characterized in terms of size, polydispersity, zeta potential and morphology. Moreover, the aptamer/antibody association efficiency was also determined. Nano-sized monodisperse nanoparticles, exhibiting a spherical core-shell structure, were obtained through both procedures. Furthermore, all the nanocarriers were successfully functionalized, showing association efficiency values above 70%. Interestingly, microfluidic-based nanoparticles displayed a smaller size and a more positive zeta potential than those prepared by single-step nanoprecipitation. Outcomes suggest both techniques led to lipid-polymer hybrid nanoparticles displaying a similar functionalization efficiency. Conversely, the microfluidic approach provided an improved control over critical parameters, as particle size or charge, constituting an interesting alternative to traditional formulation procedures.


Asunto(s)
Nanopartículas , Polímeros , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Lípidos/química , Nanopartículas/química , Tamaño de la Partícula , Polímeros/química
3.
Pharmaceutics ; 13(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34575406

RESUMEN

Lyophilization is often employed to transform nanoparticle suspensions to stable solid forms. This work proposed Neurofuzzy Logic (NFL) to better understand the lyophilization process of Nanostructured Lipid Carriers' (NLCs) dispersions and the carbohydrate cryoprotectants' (CPs) performance in these processes. NLCs were produced by hot homogenization, frozen at different speeds, and lyophilized using several CPs at variable concentrations. NLCs were characterized, and results were expressed as increase in particle size (Δ size), polydispersity (Δ PdI), and zeta potential (Δ ZP) of lyophilized powders (LP) regarding initial dispersions. CPs were classified according to their molecular weights (MW), and the osmolarities (Π) of CPs solutions were also determined. Databases obtained were finally modelled through FormRules® (Intelligensys Ltd., Kirkwall, Scotland, UK), an NFL software. NFL models revealed that CPs' MW determines the optimal freezing conditions and CPs' proportions. The knowledge generated allowed the establishment of a traffic light system intended to successfully select and apply sugars for nanoparticles lyophilization.

4.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121030

RESUMEN

Oral anti-mycobacterial treatment of Crohn's disease (CD) is limited by the low aqueous solubility of drugs, along with the altered gut conditions of patients, making uncommon their clinical use. Hence, the aim of the present work is focused on the in vitro evaluation of rifabutin (RFB)-loaded Nanostructured lipid carriers (NLC), in order to solve limitations associated to this therapeutic approach. RFB-loaded NLC were prepared by hot homogenization and characterized in terms of size, polydispersity, surface charge, morphology, thermal stability, and drug payload and release. Permeability across Caco-2 cell monolayers and cytotoxicity and uptake in human macrophages was also determined. NLC obtained were nano-sized, monodisperse, negatively charged, and spheroidal-shaped, showing a suitable drug payload and thermal stability. Furthermore, the permeability profile, macrophage uptake and selective intracellular release of RFB-loaded NLC, guarantee an effective drug dose administration to cells. Outcomes suggest that rifabutin-loaded NLC constitute a promising strategy to improve oral anti-mycobacterial therapy in Crohn's disease.

5.
Int J Pharm ; 553(1-2): 522-530, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30442594

RESUMEN

Nanostructured lipid carriers (NLC) are biocompatible and biodegradable nanoscale systems with extensive application for controlled drug release. However, the development of optimal nanosystems along with a reproducible manufacturing process is still challenging. In this study, a two-step experimental design was performed and databases were successfully modelled using Artificial Intelligence techniques as an innovative method to get optimal, reproducible and stable NLC. The initial approach, including a wide range of values for the different variables, was followed by a second set of experiments with variable values in a narrower range, more suited to the characteristics of the system. NLC loaded with rifabutin, a hydrophobic drug model, were produced by hot homogenization and fully characterized in terms of particle size, size distribution, zeta potential, encapsulation efficiency and drug loading. The use of Artificial Intelligence tools has allowed to elucidate the key parameters that modulate each formulation property. Stable nanoparticles with low sizes and polydispersions, negative zeta potentials and high drug loadings were obtained when the proportion of lipid components, drug, surfactants and stirring speed were optimized by FormRules® and INForm®. The successful application of Artificial Intelligence tools on NLC formulation optimization constitutes a pioneer approach in the field of lipid nanoparticles.


Asunto(s)
Inteligencia Artificial , Portadores de Fármacos/química , Lípidos/química , Nanopartículas , Química Farmacéutica , Bases de Datos Factuales , Preparaciones de Acción Retardada , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Reproducibilidad de los Resultados , Rifabutina/administración & dosificación , Rifabutina/química , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA