Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; 30(1 Pt B): 552-60, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26362510

RESUMEN

This study aimed to compare the cell stress effects of low and high uranium concentrations and relate them to its localization, precipitate formation, and exposure time. The time-course analysis shows that uranium appears in cell nuclei as a soluble form within 5 min of exposure, and quickly induces expression of antioxidant and DNA repair genes. On the other hand, precipitate formations began at the very beginning of exposure at the 300-µM concentration, but took longer to appear at lower concentrations. Adaptive response might occur at low concentrations but are overwhelmed at high concentrations, especially when uranium precipitates are abundant.


Asunto(s)
Núcleo Celular/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Uranio/toxicidad , Apoptosis/efectos de la radiación , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Células Hep G2 , Humanos , Estrés Oxidativo/efectos de la radiación , Uranio/farmacocinética
2.
Biomed Res Int ; 2014: 181989, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24693537

RESUMEN

Uranium level in drinking water is usually in the range of microgram-per-liter, but this value may be as much as 100 to 1000 times higher in some areas, which may raise question about the health consequences for human populations living in these areas. Our purpose was to improve knowledge of chemical effects of uranium following chronic ingestion. Experiments were performed on rats contaminated for 9 months via drinking water containing depleted uranium (0.2, 2, 5, 10, 20, 40, or 120 mg/L). Blood biochemical and hematological indicators were measured and several different types of investigations (molecular, functional, and structural) were conducted in organs (intestine, liver, kidneys, hematopoietic cells, and brain). The specific sensitivity of the organs to uranium was deduced from nondeleterious biological effects, with the following thresholds (in mg/L): 0.2 for brain, >2 for liver, >10 for kidneys, and >20 for intestine, indicating a NOAEL (No-Observed-Adverse-Effect Level) threshold for uranium superior to 120 m g/L. Based on the chemical uranium toxicity, the tolerable daily intake calculation yields a guideline value for humans of 1350 µg/L. This value was higher than the WHO value of 30 µg/L, indicating that this WHO guideline for uranium content in drinking water is very protective and might be reconsidered.


Asunto(s)
Envejecimiento/fisiología , Uranio/administración & dosificación , Uranio/farmacología , Administración Oral , Envejecimiento/sangre , Animales , Antioxidantes/metabolismo , Recuento de Células Sanguíneas , Colesterol/metabolismo , Colina/metabolismo , Ingestión de Líquidos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Humanos , Intestinos/efectos de los fármacos , Intestinos/inmunología , Masculino , Proteínas de la Membrana/metabolismo , Especificidad de Órganos/efectos de los fármacos , Ratas Sprague-Dawley , Aumento de Peso/efectos de los fármacos , Xenobióticos
3.
Arch Toxicol ; 88(2): 227-39, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24146111

RESUMEN

Enzymes that metabolize xenobiotics (XME) are well recognized in experimental models as representative indicators of organ detoxification functions and of exposure to toxicants. As several in vivo studies have shown, uranium can alter XME in the rat liver or kidneys after either acute or chronic exposure. To determine how length or level of exposure affects these changes in XME, we continued our investigation of chronic rat exposure to depleted uranium (DU, uranyl nitrate). The first study examined the effect of duration (1-18 months) of chronic exposure to DU, the second evaluated dose dependence, from a level close to that found in the environment near mining sites (0.2 mg/L) to a supra-environmental dose (120 mg/L, 10 times the highest level naturally found in the environment), and the third was an in vitro assessment of whether DU exposure directly affects XME and, in particular, CYP3A. The experimental in vivo models used here demonstrated that CYP3A is the enzyme modified to the greatest extent: high gene expression changed after 6 and 9 months. The most substantial effects were observed in the liver of rats after 9 months of exposure to 120 mg/L of DU: CYP3A gene and protein expression and enzyme activity all decreased by more than 40 %. Nonetheless, no direct effect of DU by itself was observed after in vitro exposure of rat microsomal preparations, HepG2 cells, or human primary hepatocytes. Overall, these results probably indicate the occurrence of regulatory or adaptive mechanisms that could explain the indirect effect observed in vivo after chronic exposure.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Nitrato de Uranilo/toxicidad , Animales , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Inactivación Metabólica , Riñón/efectos de los fármacos , Riñón/enzimología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Ratas , Ratas Sprague-Dawley , Pruebas de Toxicidad Crónica , Nitrato de Uranilo/administración & dosificación , Xenobióticos/metabolismo , Xenobióticos/farmacocinética
4.
Nephrol Ther ; 8(3): 146-55, 2012 Jun.
Artículo en Francés | MEDLINE | ID: mdl-22475789

RESUMEN

Over the last few decades, prevalence of renal diseases has grown continuously in occidental societies due to life conditions (age, life style, chronic disease, etc.) or potential exposure to nephrotoxic agents (drugs and environmental chemicals). Today, the knowledge of the nephropatology mechanism is improving. Nevertheless, considering it is a complex and multifunctional structure, the clinical strategy of this issue (prognostic, diagnostic or therapy) keeps posing a major challenge for clinicians mostly because classical markers are not sensitive enough and require hours before reaching significant levels. Furthermore, most of these markers provide information on function and not on structural integrity of the tissue. Identification and development of new biomarkers share promise of improvement in the rapid diagnostic of kidney diseases and development of new cures in order to optimize the clinical strategy associated to the renal failure.


Asunto(s)
Enfermedades Renales/diagnóstico , Biomarcadores/análisis , Humanos , Enfermedades Renales/sangre , Enfermedades Renales/inducido químicamente , Enfermedades Renales/orina
5.
Toxicology ; 279(1-3): 27-35, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-20849911

RESUMEN

Uranium is a radioactive heavy metal with a predominantly chemical toxicity, affecting especially the kidneys and more particularly the proximal tubular structure. Until now, few experimental studies have examined the effect of chronic low-dose exposure to uranium on kidney integrity: these mainly analyse standard markers such as creatinine and urea, and none has studied the effect of additional co-exposure to a nephrotoxic agent on rats chronically exposed to uranium. The aim of the present study is to examine the potential cumulative effect of treating uranium-exposed rats with a nephrotoxic drug. Neither physiological indicators (diuresis and creatinine clearance) nor standard plasma and urine markers (creatinine, urea and total protein) levels were deteriorated when uranium exposure was combined with gentamicin-induced nephrotoxicity. A histological study confirmed the preferential impact of gentamicin on the tubular structure and showed that uranium did not aggravate the histopathological renal lesions. Finally, the use of novel markers of kidney toxicity, such as KIM-1, osteopontin and kallikrein, provides new knowledge about the nephrotoxicity threshold of gentamicin, and allows us to conclude that under our experimental conditions, low dose uranium exposure did not induce signs of nephrotoxicity or enhance renal sensitivity to another nephrotoxicant.


Asunto(s)
Antibacterianos/toxicidad , Gentamicinas/toxicidad , Enfermedades Renales/inducido químicamente , Uranio/toxicidad , Animales , Antibacterianos/administración & dosificación , Biomarcadores/metabolismo , Moléculas de Adhesión Celular/metabolismo , Creatinina/sangre , Creatinina/orina , Diuresis/efectos de los fármacos , Interacciones Farmacológicas , Gentamicinas/administración & dosificación , Calicreínas/metabolismo , Enfermedades Renales/patología , Masculino , Osteopontina/metabolismo , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Uranio/administración & dosificación , Uranio/química , Urea/metabolismo
6.
Chem Res Toxicol ; 23(12): 1883-9, 2010 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21067124

RESUMEN

Uranium is naturally found in the environment, and its extensive use results in an increased risk of human exposure. Kidney cells have mainly been used as in vitro models to study effects of uranium exposure, and very little about the effects on other cell types is known. The aim of this study was to assess the impact of depleted uranium exposure at the cellular level in human kidney (HEK-293), liver (HepG2), and neuronal (IMR-32) cell lines. Cytotoxicity studies showed that these cell lines reacted in a roughly similar manner to depleted uranium exposure, responding at a cytotoxicity threshold of 300-500 µM. Uranium was localized in cells with secondary ion mass spectrometry technology. Results showed that uranium precipitates at subtoxic concentrations (>100 µM). With this approach, we were able for the first time to observe the soluble form of uranium in the cell at low concentrations (10-100 µM). Moreover, this technique allows us to localize it mainly in the nucleus. These innovative results raise the question of how uranium penetrates into cells and open new perspectives for studying the mechanisms of uranium chemical toxicity.


Asunto(s)
Contaminantes Ambientales/toxicidad , Uranio/toxicidad , Línea Celular , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Contaminantes Ambientales/análisis , Humanos , Espectrometría de Masa de Ion Secundario , Uranio/análisis
7.
Environ Toxicol Pharmacol ; 28(3): 363-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21784028

RESUMEN

The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA