Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Cells ; 13(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273038

RESUMEN

Antimony-doped tin oxide nanoparticles (ATO NPs) have emerged as a promising tool in biomedical applications, namely robust photothermal effects upon near-infrared (NIR) light exposure, enabling controlled thermal dynamics to induce spatial cell death. This study investigated the interplay between ATO NPs and macrophages, understanding cellular uptake and cytokine release. ATO NPs demonstrated biocompatibility with no impact on macrophage viability and cytokine secretion. These findings highlight the potential of ATO NPs for inducing targeted cell death in cancer treatments, leveraging their feasibility, unique NIR properties, and safe interactions with immune cells. ATO NPs offer a transformative platform with significant potential for future biomedical applications by combining photothermal capabilities and biocompatibility.


Asunto(s)
Antimonio , Macrófagos , Compuestos de Estaño , Antimonio/química , Antimonio/farmacología , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Ratones , Nanopartículas del Metal/química , Células RAW 264.7 , Supervivencia Celular/efectos de los fármacos , Humanos , Nanopartículas/química , Citocinas/metabolismo
2.
Nanoscale Adv ; 6(18): 4572-4582, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39263406

RESUMEN

Macrophages play a pivotal role in the internalization and processing of administered nanoparticles (NPs). Furthermore, the phagocytic capacity and immunological properties of macrophages can vary depending on their microenvironment, exhibiting a spectrum of polarization states ranging from pro-inflammatory M1 to anti-inflammatory M2. However, previous research investigating this phenotype-dependent interaction with NPs has predominantly relied on semi-quantitative techniques or conventional metrics to assess intracellular NPs. Here, we focus on the interaction of human monocyte-derived macrophage phenotypes (M1-like and M2-like) with gold NPs (AuNPs) by combining population-based metrics and single-cell analysis by focused ion beam-scanning electron microscopy (FIB-SEM). The multimodal analysis revealed phenotype-dependent response and uptake behavior differences, becoming more pronounced after 48 hours. The study also highlighted phenotype-dependent cell-to-cell heterogeneity in AuNPs uptake and variability in particle number at the single-cell level, which was particularly evident in M2-like macrophages, which increases with time, indicating enhanced heteroscedasticity. Future efforts to design NPs targeting macrophages should consider the phenotypic variations and the distribution of NPs concentrations within a population, including the influence of cell-to-cell heterogeneity. This comprehensive understanding will be critical in developing safe and effective NPs to target different macrophage phenotypes.

3.
Chem Res Toxicol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115970

RESUMEN

With numerous novel and innovative in vitro models emerging every year to reduce or replace animal testing, there is an urgent need to align the design, harmonization, and validation of such systems using in vitro-in vivo extrapolation (IVIVE) approaches. In particular, in inhalation toxicology, there is a lack of predictive and prevalidated in vitro lung models that can be considered a valid alternative for animal testing. The predictive power of such models can be enhanced by applying the Adverse Outcome Pathways (AOP) framework, which casually links key events (KE) relevant to IVIVE. However, one of the difficulties identified is that the endpoint analysis and readouts of specific assays in in vitro and animal models for specific toxicants are currently not harmonized, making the alignment challenging. We summarize the current state of the art in endpoint analysis in the two systems, focusing on inflammatory-induced effects and providing guidance for future research directions to improve the alignment.

5.
Curr Res Food Sci ; 9: 100808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149527

RESUMEN

Introducing particles as additives, specifically engineered nanoparticles, in the food industry has improved food properties. Since 2014, alongside the presence of these added particles, there has been a mandatory requirement to disclose if those additives are nanomaterials in the ingredient list of food products. However, detecting and characterizing nanomaterials is time-consuming due to their small sizes, low concentrations, and diverse food matrices. We present a streamlined analytical process to detect the presence of silica and titania particles in food, applicable for food regulation and control. Using X-ray Fluorescence Spectrometry for screening enables quick categorization of inorganic particles labeling accuracy, distinguishing products with and without them. For the former, we develop matrix-independent digestion and introduce time-effective statistics to evaluate the median particle size using a reduced number of particles counted, ensuring accurate "nano" labeling. Through the implementation of this work, our objective is to simplify and facilitate verifying the proper labeling of food products.

6.
Chimia (Aarau) ; 78(6): 397-402, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38946412

RESUMEN

Nanomaterials hold immense potential for numerous applications in energy, health care, and environmental sectors, playing an important role in our daily lives. Their utilization spans from improving energy efficiency to enhancing medical diagnostics, and mitigating environmental pollution, thus presenting a multifaceted approach towards achieving sustainability goals. To ensure the sustainable and safe utilization of nanomaterials, a thorough evaluation of potential hazards and risks is essential throughout their lifecycle-from resource extraction and production to use and disposal. In this review, we focus on understanding and addressing potential environmental and health risks associated with nanomaterial utilization. We advocate for a balanced approach with early hazard identification, safe-by-design principles, and life cycle assessments, while emphasizing safe handling and disposal practices, collaboration, and continuous improvement. Our goal is to ensure responsible nanotechnology development, fostering innovation alongside environmental and community well-being, through a holistic approach integrating science, ethics, and proactive risk assessment.


Asunto(s)
Nanoestructuras , Medición de Riesgo , Humanos , Contaminación Ambiental/prevención & control , Nanotecnología/métodos
7.
Part Fibre Toxicol ; 21(1): 26, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778339

RESUMEN

BACKGROUND: During inhalation, airborne particles such as particulate matter ≤ 2.5 µm (PM2.5), can deposit and accumulate on the alveolar epithelial tissue. In vivo studies have shown that fractions of PM2.5 can cross the alveolar epithelium to blood circulation, reaching secondary organs beyond the lungs. However, approaches to quantify the translocation of particles across the alveolar epithelium in vivo and in vitro are still not well established. In this study, methods to assess the translocation of standard diesel exhaust particles (DEPs) across permeable polyethylene terephthalate (PET) inserts at 0.4, 1, and 3 µm pore sizes were first optimized with transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-VIS), and lock-in thermography (LIT), which were then applied to study the translocation of DEPs across human alveolar epithelial type II (A549) cells. A549 cells that grew on the membrane (pore size: 3 µm) in inserts were exposed to DEPs at different concentrations from 0 to 80 µg.mL- 1 ( 0 to 44 µg.cm- 2) for 24 h. After exposure, the basal fraction was collected and then analyzed by combining qualitative (TEM) and quantitative (UV-VIS and LIT) techniques to assess the translocated fraction of the DEPs across the alveolar epithelium in vitro. RESULTS: We could detect the translocated fraction of DEPs across the PET membranes with 3 µm pore sizes and without cells by TEM analysis, and determine the percentage of translocation at approximatively 37% by UV-VIS (LOD: 1.92 µg.mL- 1) and 75% by LIT (LOD: 0.20 µg.cm- 2). In the presence of cells, the percentage of DEPs translocation across the alveolar tissue was determined around 1% at 20 and 40 µg.mL- 1 (11 and 22 µg.cm- 2), and no particles were detected at higher and lower concentrations. Interestingly, simultaneous exposure of A549 cells to DEPs and EDTA can increase the translocation of DEPs in the basal fraction. CONCLUSION: We propose a combination of analytical techniques to assess the translocation of DEPs across lung tissues. Our results reveal a low percentage of translocation of DEPs across alveolar epithelial tissue in vitro and they correspond to in vivo findings. The combination approach can be applied to any traffic-generated particles, thus enabling us to understand their involvement in public health.


Asunto(s)
Material Particulado , Alveolos Pulmonares , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Células A549 , Material Particulado/toxicidad , Material Particulado/análisis , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Tamaño de la Partícula , Microscopía Electrónica de Transmisión , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/toxicidad , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis
8.
Mar Pollut Bull ; 203: 116468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744048

RESUMEN

Detection of small plastic particles in environmental water samples has been a topic of increasing interest in recent years. A multitude of techniques, such as variants of Raman spectroscopy, have been employed to facilitate their analysis in such complex sample matrices. However, these studies are often conducted for a limited number of plastic types in matrices with relatively little additional materials. Thus, much remains unknown about what parameters influence the detection limits of Raman spectroscopy for more environmentally relevant samples. To address this, this study utilizes Raman spectroscopy to detect six plastic particle types; 161 and 33 nm polystyrene, < 450 nm and 36 nm poly(ethylene terephthalate), 121 nm polypropylene, and 126 nm polyethylene; spiked into artificial saltwater, artificial freshwater, North Sea, Thames River, and Elbe River water. Overall, factors such as plastic particle properties, water matrix composition, and experimental setup were shown to influence the final limits of detection.


Asunto(s)
Monitoreo del Ambiente , Agua Dulce , Plásticos , Espectrometría Raman , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Plásticos/análisis , Agua Dulce/química , Agua de Mar/química , Ríos/química , Microplásticos/análisis
9.
Curr Opin Biotechnol ; 87: 103128, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581743

RESUMEN

Classical Coulombic interaction, characterized by electrostatic interactions mediated through surface charges, is often regarded as the primary determinant in nanoparticles' (NPs) cellular association and internalization. However, the intricate physicochemical properties of particle surfaces, biomolecular coronas, and cell surfaces defy this oversimplified perspective. Moreover, the nanometrological techniques employed to characterize NPs in complex physiological fluids often exhibit limited accuracy and reproducibility. A more comprehensive understanding of nanoparticle-cell membrane interactions, extending beyond attractive forces between oppositely charged surfaces, necessitates the establishment of databases through rigorous physical, chemical, and biological characterization supported by nanoscale analytics. Additionally, computational approaches, such as in silico modeling and machine learning, play a crucial role in unraveling the complexities of these interactions.


Asunto(s)
Membrana Celular , Nanopartículas , Electricidad Estática , Propiedades de Superficie , Membrana Celular/metabolismo , Aprendizaje Automático , Nanopartículas/química
10.
Environ Sci Nano ; 11(3): 1000-1011, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38496351

RESUMEN

The presence of submicron- (1 µm-100 nm) and nanoplastic (<100 nm) particles within various sample matrices, ranging from marine environments to foods and beverages, has become a topic of increasing interest in recent years. Despite this interest, very few analytical techniques are known that allow for the detection of these small plastic particles in the low concentration ranges that they are anticipated to be present at. Research focused on optimizing surface-enhanced Raman scattering (SERS) to enhance signal obtained in Raman spectroscopy has been shown to have great potential for the detection of plastic particles below conventional resolution limits. In this study, we produce SERS substrates composed of gold nanostars and assess their potential for submicron- and nanoplastic detection. The results show 33 nm polystyrene could be detected down to 1.25 µg mL-1 while 36 nm poly(ethylene terephthalate) was detected down to 5 µg mL-1. These results confirm the promising potential of the gold nanostar-based SERS substrates for nanoplastic detection. Furthermore, combined with findings for 121 nm polypropylene and 126 nm polyethylene particles, they highlight potential differences in analytical performance that depend on the properties of the plastics being studied.

11.
Nanomaterials (Basel) ; 14(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38392715

RESUMEN

The delivery of nanomedicines into cells holds enormous therapeutic potential; however little is known regarding how the extracellular matrix (ECM) can influence cell-nanoparticle (NP) interactions. Changes in ECM organization and composition occur in several pathophysiological states, including fibrosis and tumorigenesis, and may contribute to disease progression. We show that the physical characteristics of cellular substrates, that more closely resemble the ECM in vivo, can influence cell behavior and the subsequent uptake of NPs. Electrospinning was used to create two different substrates made of soft polyurethane (PU) with aligned and non-aligned nanofibers to recapitulate the ECM in two different states. To investigate the impact of cell-substrate interaction, A549 lung epithelial cells and MRC-5 lung fibroblasts were cultured on soft PU membranes with different alignments and compared against stiff tissue culture plastic (TCP)/glass. Both cell types could attach and grow on both PU membranes with no signs of cytotoxicity but with increased cytokine release compared with cells on the TCP. The uptake of silica NPs increased more than three-fold in fibroblasts but not in epithelial cells cultured on both membranes. This study demonstrates that cell-matrix interaction is substrate and cell-type dependent and highlights the importance of considering the ECM and tissue mechanical properties when designing NPs for effective cell targeting and treatment.

12.
J Phys Chem C Nanomater Interfaces ; 128(1): 421-427, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38229591

RESUMEN

Characterizing nanoparticles (NPs) is crucial in nanoscience due to the direct influence of their physiochemical properties on their behavior. Various experimental techniques exist to analyze the size and shape of NPs, each with advantages, limitations, proneness to uncertainty, and resource requirements. One of them is electron microscopy (EM), often considered the gold standard, which offers visualization of the primary particles. However, despite its advantages, EM can be expensive, less accessible, and difficult to apply during dynamic processes. Therefore, using EM for specific experimental conditions, such as observing dynamic processes or visualizing low-contrast particles, is challenging. This study showcases the potential of machine learning in deriving EM parameters by utilizing cost-effective and dynamic techniques such as dynamic light scattering (DLS) and UV-vis spectroscopy. Our developed model successfully predicts the size and shape parameters of gold NPs based on DLS and UV-vis results. Furthermore, we demonstrate the practicality of our model in situations in which conducting EM measurements presents a challenge: Tracking in situ the synthesis of 100 nm gold NPs.

13.
ALTEX ; 41(1): 91-103, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37843016

RESUMEN

In vitro methods provide a key opportunity to model human-relevant exposure scenarios for hazard identification of inhaled toxicants. Compared to in vivo tests, in vitro methods have the advantage of assessing effects of inhaled toxicants caused by differences in dosimetry, e.g., variations in con­centration (exposure intensity), exposure duration, and exposure frequency, in an easier way. Variations in dosimetry can be used to obtain information on adverse effects in human-relevant exposure scenarios that can be used for risk assessment. Based on the published literature of exposure approaches using air-liquid interface models of the respiratory tract, supplemented with additional experimental data from the EU H2020 project "PATROLS" and research funded by the Dutch Ministry of Agriculture, Nature and Food Quality, the advantages and disadvantages of dif­ferent exposure methods and considerations to design an experimental setup are summarized and discussed. As the cell models used are models for the respiratory epithelium, our focus is on the local effects in the airways. In conclusion, in order to generate data from in vitro methods for risk assessment of inhaled toxicants it is recommended that (1) it is considered what information really is needed for hazard or risk assessment; (2) the exposure system that is most suitable for the chemical to be assessed is chosen; (3) a deposited dose that mimics deposition in the human respiratory tract is used, and (4) the post-exposure sampling methodology should be carefully considered and relevant to the testing strategy used.


The impact of airborne pollutants on human health is determined by what pollutant it is, how much we breathe in, for how long and how often. Testing in animals is cumbersome and results may not reflect human health impacts. Advanced cell models of the human lung allow prediction of the health impact of many different exposure scenarios. Here, we compare different models and exposure methods and provide criteria that may assist in designing experiments, interpreting the results, and thus assessing the risks posed by airborne pollutants. We recommend (1) determining what infor­mation is needed to plan the experiment, (2) choosing an exposure method that is suitable for the pollutant of interest, (3) determining the amount of pollutant that interacts with the human lung, to relate this to realistic deposition in the lung, and (4) considering the time between the exposure and measurement of the effect.


Asunto(s)
Exposición por Inhalación , Sistema Respiratorio , Humanos , Exposición por Inhalación/efectos adversos , Medición de Riesgo/métodos , Sustancias Peligrosas/toxicidad
14.
Drug Deliv Transl Res ; 14(10): 2655-2667, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38161192

RESUMEN

Glioblastoma (GBM) stands as a highly aggressive and deadly malignant primary brain tumor with a median survival time of under 15 months upon disease diagnosis. While immunotherapies have shown promising results in solid cancers, brain cancers are still unresponsive to immunotherapy due to immunological dysfunction and the presence of a blood-brain barrier. Interleukin-12 (IL-12) emerges as a potent cytokine in fostering anti-tumor immunity by triggering interferon-gamma production in T and natural killer cells and changing macrophages to a tumoricidal phenotype. However, systemic administration of IL-12 toxicity in clinical trials often leads to significant toxicity, posing a critical hurdle. To overcome this major drawback, we have formulated a novel nanoadjuvant composed of immunostimulatory nanoparticles (ISN) loaded with IL-12 to decrease IL-12 toxicity and enhance the immune response by macrophages and GBM cancer cells. Our in vitro results reveal that ISN substantially increase the production of pro-inflammatory cytokines in GBM cancer cells (e.g. 2.6 × increase in IL-8 expression compared to free IL-12) and macrophages (e.g. 2 × increase in TNF-α expression and 6 × increase in IL-6 expression compared to the free IL-12). These findings suggest a potential modulation of the tumor microenvironment. Additionally, our study demonstrates the effective intracellular delivery of IL-12 by ISN, triggering alterations in the levels of pro-inflammatory cytokines at both transcriptional and protein expression levels. These results highlight the promise of the nanoadjuvant as a prospective platform for resharing the GBM microenvironment and empowering immunotherapy.


Asunto(s)
Adyuvantes Inmunológicos , Neoplasias Encefálicas , Citocinas , Glioblastoma , Inmunoterapia , Interleucina-12 , Nanopartículas , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/tratamiento farmacológico , Inmunoterapia/métodos , Humanos , Nanopartículas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Citocinas/inmunología , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Animales
15.
Front Nanotechnol ; 5: 1220514, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37954478

RESUMEN

Introduction: Delivery of therapeutic nanoparticles (NPs) to cancer cells represents a promising approach for biomedical applications. A key challenge for nanotechnology translation from the bench to the bedside is the low amount of administered NPs dose that effectively enters target cells. To improve NPs delivery, several studies proposed NPs conjugation with ligands, which specifically deliver NPs to target cells via receptor binding. One such example is epidermal growth factor (EGF), a peptide involved in cell signaling pathways that control cell division by binding to epidermal growth factor receptor (EGFR). However, very few studies assessed the influence of EGF present in the cell environment, on the cellular uptake of NPs. Methods: We tested if the stimulation of EGFR-expressing lung carcinomacells A549 with EGF affects the uptake of 59 nm and 422 nm silica (SiO2) NPs. Additionally, we investigated whether the uptake enhancement can be achieved with gold NPs, suitable to downregulate the expression of cancer oncogene c-MYC. Results: Our findings show that EGF binding to its receptor results in receptor autophosphorylation and initiate signaling pathways, leading to enhanced endocytosis of 59 nm SiO2 NPs, but not 422 nm SiO2 NPs. Additionally, we demonstrated an enhanced gold (Au) NPs endocytosis and subsequently a higher downregulation of c-MYC. Discussion: These findings contribute to a better understanding of NPs uptake in the presence of EGF and that is a promising approach for improved NPs delivery.

16.
Toxins (Basel) ; 15(8)2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37624239

RESUMEN

The gastrointestinal tract is the main target of orally ingested nanoparticles (NPs) and at the same time is exposed to noxious substances, such as bacterial components. We investigated the interaction of 59 nm silica (SiO2) NPs with differentiated Caco-2 intestinal epithelial cells in the presence of cholera toxin subunit B (CTxB) and compared the effects to J774A.1 macrophages. CTxB can affect cellular functions and modulate endocytosis via binding to the monosialoganglioside (GM1) receptor, expressed on both cell lines. After stimulating macrophages with CTxB, we observed notable changes in the membrane structure but not in Caco-2 cells, and no secretion of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) was detected. Cells were then exposed to 59 nm SiO2 NPs and CtxB sequentially and simultaneously, resulting in a high NP uptake in J774A.1 cells, but no uptake in Caco-2 cells was detected. Flow cytometry analysis revealed that the exposure of J774A.1 cells to CTxB resulted in a significant reduction in the uptake of SiO2 NPs. In contrast, the uptake of NPs by highly selective Caco-2 cells remained unaffected following CTxB exposure. Based on colocalization studies, CTxB and NPs might enter cells via shared endocytic pathways, followed by their sorting into different intracellular compartments. Our findings provide new insights into CTxB's function of modulating SiO2 NP uptake in phagocytic but not in differentiated intestine cells.


Asunto(s)
Toxina del Cólera , Dióxido de Silicio , Humanos , Toxina del Cólera/toxicidad , Dióxido de Silicio/toxicidad , Células CACO-2 , Endocitosis , Transporte Biológico
17.
Eur J Pharm Sci ; 188: 106511, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37385303

RESUMEN

Transepithelial electrical resistance (TEER) measures electrical resistance across epithelial tissue barriers involving confluent layer(s) of cells. TEER values act as a prerequisite for determining the barrier integrity of cells, which play a key role in evaluating the transport of drugs, materials or chemicals of interest across an epithelial barrier. The measurements can be performed non-invasively by measuring ohmic resistance across a defined area. Thus, the TEER values are reported in Ω·cm2. In vitro epithelial models are typically assembled on semi-permeable inserts providing two-chamber compartments, and the majority of the studies use inserts with polyethylene terephthalate (PET) membranes. Recently, new inserts with different membrane types and properties have been introduced. However, the TEER values presented so far did not allow a direct comparison. This study presents the characterization of selected epithelial tissues, i.e., lung, retina, and intestine, grown on an ultra-thin ceramic microporous permeable insert (SiMPLI) and PET membranes with different properties, i.e., thickness, material, and pore numbers. We verified the epithelial cell growth on both inserts via phase-contrast and confocal laser scanning microscope imaging. Barrier characteristics were assessed by TEER measurements and also by evaluating the permeability of fluorescein isothiocyanate through cell layers. The findings indicated that background TEER value calculations and the available surface area for cell growth must be thoroughly assessed when new inserts are introduced, as the values cannot be directly compared without re-calculations. Finally, we proposed electrical circuit models highlighting the contributors to TEER recordings on PET and SiMPLI insert membranes. This study paves the way for making the ohmic-based evaluation of epithelial tissues' permeability independent of the material and geometry of the insert membrane used for cell growth.


Asunto(s)
Células Epiteliales , Pulmón , Impedancia Eléctrica , Epitelio , Fluoresceína
18.
Front Bioeng Biotechnol ; 11: 1159819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346794

RESUMEN

The complex interaction between tumor-associated macrophages (TAMs) and tumor cells through soluble factors provides essential cues for breast cancer progression. TAMs-targeted therapies have shown promising clinical therapeutical potential against cancer progression. The molecular mechanisms underlying the response to TAMs-targeted therapies depends on complex dynamics of immune cross-talk and its understanding is still incomplete. In vitro models are helpful to decipher complex responses to combined immunotherapies. In this study, we established and characterized a 3D human macrophage-ER+ PR+ HER2+ breast cancer model, referred to as macrophage-tumor spheroid (MTS). Macrophages integrated within the MTS had a mixed M2/M1 phenotype, abrogated the anti-proliferative effect of trastuzumab on tumor cells, and responded to IFNγ with increased M1-like polarization. The targeted treatment of MTS with a combined CSF1R kinase inhibitor and an activating anti-CD40 antibody increased M2 over M1 phenotype (CD163+/CD86+ and CD206+/CD86+ ratio) in time, abrogated G2/M cell cycle phase transition of cancer cells, promoted the secretion of TNF-α and reduced cancer cell viability. In comparison, combined treatment in a 2D macrophage-cancer cell co-culture model reduced M2 over M1 phenotype and decreased cancer cell viability. Our work shows that this MTS model is responsive to TAMs-targeted therapies, and may be used to study the response of ER+ PR+ HER2+ breast cancer lines to novel TAM-targeting therapies.

19.
NanoImpact ; 31: 100466, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209722

RESUMEN

BACKGROUND: The establishment of reliable and robust in vitro models for hazard assessment, a prerequisite for moving away from animal testing, requires the evaluation of model transferability and reproducibility. Lung models that can be exposed via the air, by means of an air-liquid interface (ALI) are promising in vitro models for evaluating the safety of nanomaterials (NMs) after inhalation exposure. We performed an inter-laboratory comparison study to evaluate the transferability and reproducibility of a lung model consisting of the human bronchial cell line Calu-3 as a monoculture and, to increase the physiologic relevance of the model, also as a co-culture with macrophages (either derived from the THP-1 monocyte cell line or from human blood monocytes). The lung model was exposed to NMs using the VITROCELL® Cloud12 system at physiologically relevant dose levels. RESULTS: Overall, the results of the 7 participating laboratories are quite similar. After exposing Calu-3 alone and Calu-3 co-cultures with macrophages, no effects of lipopolysaccharide (LPS), quartz (DQ12) or titanium dioxide (TiO2) NM-105 particles on the cell viability and barrier integrity were detected. LPS exposure induced moderate cytokine release in the Calu-3 monoculture, albeit not statistically significant in most labs. In the co-culture models, most laboratories showed that LPS can significantly induce cytokine release (IL-6, IL-8 and TNF-α). The exposure to quartz and TiO2 particles did not induce a statistically significant increase in cytokine release in both cell models probably due to our relatively low deposited doses, which were inspired by in vivo dose levels. The intra- and inter-laboratory comparison study indicated acceptable interlaboratory variation for cell viability/toxicity (WST-1, LDH) and transepithelial electrical resistance, and relatively high inter-laboratory variation for cytokine production. CONCLUSION: The transferability and reproducibility of a lung co-culture model and its exposure to aerosolized particles at the ALI were evaluated and recommendations were provided for performing inter-laboratory comparison studies. Although the results are promising, optimizations of the lung model (including more sensitive read-outs) and/or selection of higher deposited doses are needed to enhance its predictive value before it may be taken further towards a possible OECD guideline.


Asunto(s)
Lipopolisacáridos , Cuarzo , Animales , Humanos , Técnicas de Cocultivo , Reproducibilidad de los Resultados , Pulmón , Citocinas
20.
Environ Sci Technol ; 57(16): 6664-6672, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37058431

RESUMEN

Many researchers have turned their attention to understanding microplastic interaction with marine fauna. Efforts are being made to monitor exposure pathways and concentrations and to assess the impact such interactions may have. To answer these questions, it is important to select appropriate experimental parameters and analytical protocols. This study focuses on medusae of Cassiopea andromeda jellyfish: a unique benthic jellyfish known to favor (sub-)tropical coastal regions which are potentially exposed to plastic waste from land-based sources. Juvenile medusae were exposed to fluorescent poly(ethylene terephthalate) and polypropylene microplastics (<300 µm), resin embedded, and sectioned before analysis with confocal laser scanning microscopy as well as transmission electron microscopy and Raman spectroscopy. Results show that the fluorescent microplastics were stable enough to be detected with the optimized analytical protocol presented and that their observed interaction with medusae occurs in a manner which is likely driven by the microplastic properties (e.g., density and hydrophobicity).


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Espectrometría Raman , Flujo de Trabajo , Microscopía Electrónica , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA