Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Res Sq ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38746209

RESUMEN

Our study focuses on the intricate connection between tissue-level organization and ciliated organ function in humans, particularly in understanding the morphological organization of airways and their role in mucociliary clearance. Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is associated with many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. This study, for the first time, maps the distribution of ciliated and secretory cell types along the airway tree in both rats and humans, noting species-specific differences in ciliary function and elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. By uncovering how tissue organization influences ciliary function, we can better understand disruptions in mucociliary clearance, which could have implications for various ciliated organs beyond the airways.

2.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352378

RESUMEN

BACKGROUND: Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, PTSD, dementia, and age-related cognitive decline. While BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis (AHN), its significance as a pharmacological target has not been tested. METHODS: In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in BPS in mice. RESULTS: Chronic treatment with RO6871135, 7.5 mg/kg increased AHN and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of AHN by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMK2a, CaMK2b, MAP2K6, and GSK3b. An analog compound also demonstrated high affinity for CDK8, CaMK2a, and GSK3b. CONCLUSIONS: These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS, and points to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.

3.
bioRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38187619

RESUMEN

Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is linked to major respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. Our study fills this crucial knowledge gap and for the first time (1) maps the distribution of ciliated and secretory cell types on the mucosal surface along the proximo-distal axis of the rat and human airway tree, (2) identifies species-specific differences in ciliary beat and clearance function, and (3) elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. Our broad range of experimental approaches and physics-based modeling translate into generalizable parameters to quantitatively benchmark the human-relevancy of mucociliary clearance in experimental models, and to characterize distinct disease states.

4.
Nat Commun ; 14(1): 5648, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704632

RESUMEN

The outer membrane insertase of Gram-negative bacteria, BAM, is a key target for urgently needed novel antibiotics. Functional reconstitutions of BAM have so far been limited to synthetic membranes and with low throughput capacity for inhibitor screening. Here, we describe a BAM functional assay in native membrane environment capable of high-throughput screening. This is achieved by employing outer membrane vesicles (OMVs) to present BAM directly in native membranes. Refolding of the model substrate OmpT by BAM was possible from the chaperones SurA and Skp, with the required SurA concentration three times higher than Skp. In the OMVs, the antibiotic darobactin had a tenfold higher potency than in synthetic membranes, highlighting the need for native conditions in antibiotics development. The assay is successfully miniaturized for 1536-well plates and upscaled using large scale fermentation, resulting in high-throughput capacities to screen large commercial compound libraries. Our OMV-based assay thus lays the basis for discovery, hit validation and lead expansion of antibiotics targeting BAM.


Asunto(s)
Antibacterianos , Ensayos Analíticos de Alto Rendimiento , Membranas , Antibacterianos/farmacología , Bioensayo , Fermentación
5.
Mater Today Bio ; 21: 100713, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37455819

RESUMEN

Human lung function is intricately linked to blood flow and breathing cycles, but it remains unknown how these dynamic cues shape human airway epithelial biology. Here we report a state-of-the-art protocol for studying the effects of dynamic medium and airflow as well as stretch on human primary airway epithelial cell differentiation and maturation, including mucociliary clearance, using an organ-on-chip device. Perfused epithelial cell cultures displayed accelerated maturation and polarization of mucociliary clearance, and changes in specific cell-types when compared to traditional (static) culture methods. Additional application of airflow and stretch to the airway chip resulted in an increase in polarization of mucociliary clearance towards the applied flow, reduced baseline secretion of interleukin-8 and other inflammatory proteins, and reduced gene expression of matrix metalloproteinase (MMP) 9, fibronectin, and other extracellular matrix factors. These results indicate that breathing-like mechanical stimuli are important modulators of airway epithelial cell differentiation and maturation and that their fine-tuned application could generate models of specific epithelial pathologies, including mucociliary (dys)function.

6.
Cells ; 12(11)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37296588

RESUMEN

Primary ciliary dyskinesia (PCD) is a rare heterogenic genetic disorder associated with perturbed biogenesis or function of motile cilia. Motile cilia dysfunction results in diminished mucociliary clearance (MCC) of pathogens in the respiratory tract and chronic airway inflammation and infections successively causing progressive lung damage. Current approaches to treat PCD are symptomatic, only, indicating an urgent need for curative therapeutic options. Here, we developed an in vitro model for PCD based on human induced pluripotent stem cell (hiPSC)-derived airway epithelium in Air-Liquid-Interface cultures. Applying transmission electron microscopy, immunofluorescence staining, ciliary beat frequency, and mucociliary transport measurements, we could demonstrate that ciliated respiratory epithelia cells derived from two PCD patient-specific hiPSC lines carrying mutations in DNAH5 and NME5, respectively, recapitulate the respective diseased phenotype on a molecular, structural and functional level.


Asunto(s)
Trastornos de la Motilidad Ciliar , Células Madre Pluripotentes Inducidas , Humanos , Sistema Respiratorio , Epitelio , Trastornos de la Motilidad Ciliar/genética , Fenotipo , Nucleósido Difosfato Quinasas NM23
7.
Methods Mol Biol ; 2576: 145-153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152183

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) have been exploited as drug targets for combating multiple diseases. Several activators with different selectivity for the PPAR α, γ, and δ subtypes have been introduced into the market or have reached advanced clinical trials. Binding assays are of utmost importance for the discovery and profiling of such PPAR ligands. Binding assays are often based on radioligands, in particular, tritiated molecules are applied. We developed synthetic procedures for tritiating various PPAR agonists and applied these radioligands for setting up a scintillation proximity assay (SPA) for PPAR α, γ, and δ. These SPAs allow to assess the binding affinities of PPAR α, γ, and δ ligands, along with their respective subtype selectivity profiles. Therefore, SPA is an important tool for hit discovery and lead optimization campaigns aimed at identifying next-generation PPAR ligands.


Asunto(s)
PPAR alfa , PPAR delta , Hipoglucemiantes , Ligandos , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR delta/agonistas , PPAR delta/metabolismo , PPAR gamma/metabolismo , Receptores Activados del Proliferador del Peroxisoma
8.
Methods Mol Biol ; 2576: 155-169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152184

RESUMEN

Peroxisome proliferator-activated receptors are a family of nuclear hormone receptors that control the expression of genes involved in a variety of physiologic processes, through heterodimerization with retinoid X receptor and complex formation with various cofactors. The specific cofactors recruited to PPAR-RXR complexes in response to different ligands lead to major differences in the transactivation of target genes. We developed a cofactor recruitment assay that is based on an europium-labeled anti-GST antibody and streptavidin-APC leading to a fluorescence resonance energy transfer signal. This assay allows for the determination of unique agonistic profiles in terms of potency and co-activator motif. Hence, it is a valuable drug discovery tool to support hit finding and lead optimization campaigns, enabling the characterization of next generation PPAR agonists.


Asunto(s)
PPAR alfa , PPAR gamma , Europio , Transferencia Resonante de Energía de Fluorescencia , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Receptores X Retinoide , Estreptavidina
9.
Urol Oncol ; 40(8): 380.e11-380.e18, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35725938

RESUMEN

PURPOSE: Nucleoporins as components of the nuclear pore complex (NCP) are known for regulating nuclear-cytoplasmatic transport. Recently, the nucleoporin POM121 was found to have an important impact on intranuclear translocation of prostate cancer (PCa)-specific tumor drivers including the androgen receptor (AR). The aim of our study was to assess the potential of POM121 as a prognostic biomarker. METHODS: Therefore, we performed immunohistochemistry (IHC) for POM121 on a large clinically, well characterized PCa tissue cohort comprising benign prostatic samples, radical prostatectomy (RPE) samples, lymph node metastases, local recurrent tumors and distant metastases of 289 patients. Using a semi automated tissue image analysis software we evaluated POM121 protein expression level based on IHC. RESULTS: We could show that POM121 expression increases during tumor progression. Expression levels were significantly higher in primary tumors compared to benign samples (P = 0.001), and substantially higher in advanced tumors (P < 0.001) and in distant metastases (P = 0.006) compared to primary tumors. Furthermore, POM121 expression predicts biochemical recurrence free survival (BFS) after surgery independent of the WHO group and other clinicopathological markers. 5-years BFS with primary tumors lacking POM121 and expressing POM121 was 88.8% and 68.9%, respectively. CONCLUSION: Our study reveals the potential of POM121 as a potential biomarker for PCa, predicting BFS independent of other common clinicopathological parameters. Furthermore, POM121 might be a new targetable structure for patients suffering from advanced PCa.


Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Pronóstico , Prostatectomía , Neoplasias de la Próstata/patología , Regulación hacia Arriba
10.
Carcinogenesis ; 43(8): 779-786, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35512686

RESUMEN

Cyclin-dependent kinase (CDK) 7-mediated phosphorylation of Mediator-complex subunit 1 (MED1) enhances androgen receptor (AR) activity in prostate cancer (PCa). Hyperactive AR-signalling plays a key role for the development of castration resistance. Several CDK7 inhibitors are currently under investigation in Phase I/II trials addressing solid tumours, including PCa. Aim of this study was to characterize the CDK7/phospho-(p)MED1 axis in human tissue. Immunohistochemistry was performed on 595 PCa samples including 394 primary tumour foci obtained by radical prostatectomy (RP), 64 advanced or recurrent tumours obtained by palliative transurethral resection of the prostate (pTUR), 65 lymph node metastases (LNM), 35 distant metastases (DM) and 36 benign samples. CDK7 is expressed in 79.3% of PCa tissues and protein levels are significantly higher in LNM, pTUR and DM and lower in benign tissues compared to primary tumours. CDK7 and pMED1 expression show strong positive correlation. High expression of CDK7 associated with shorter 5-year biochemical recurrence-free-survival (63.0% vs. 85.0%) and reduced survival persists when adjusted for T-Stage, nodal status, resection boundaries, grade group and pre-operative prostate-specific antigen in multivariate Cox-regression (hazard ratio 4.30; 95% CI, 1.43 to 12,40, P = 0.007). High CDK7 and pMED1 levels correlate with nuclear AR expression. CDK7 positive tumours harbour higher Ki67 expression indices and show more frequently positive ERG (ETS-related gene)-status. In conclusion, CDK7 is frequently expressed in human PCa and predicts disease recurrence after RP. Therapeutical inhibition of CDK7 might be a promising approach in treatment of advanced PCa.


Asunto(s)
Neoplasias de la Próstata , Resección Transuretral de la Próstata , Quinasas Ciclina-Dependientes/genética , Humanos , Antígeno Ki-67/genética , Metástasis Linfática , Masculino , Subunidad 1 del Complejo Mediador , Recurrencia Local de Neoplasia/genética , Antígeno Prostático Específico , Prostatectomía , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Receptores Androgénicos , Quinasa Activadora de Quinasas Ciclina-Dependientes
11.
Lab Chip ; 21(21): 4237-4248, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34605521

RESUMEN

Translation of advanced cell-based assays exhibiting a higher degree of automation, miniaturization, and integration of complementary sensing functions is mainly limited by the development of industrial-relevant prototypes that can be readily produced in larger volumes. Despite the increasing number of academic publications in recent years, the manufacturability of these microfluidic cell cultures systems is largely ignored, thus severely restricting their implementation in routine toxicological applications. We have developed a dual-sensor integrated microfluidic cell analysis platform using industrial specifications, materials, and fabrication methods to conduct risk assessment studies of engineered nanoparticles to overcome this academic-industrial gap. Non-invasive and time-resolved monitoring of cellular oxygen uptake and metabolic activity (pH) in the absence and presence of nanoparticle exposure is accomplished by integrating optical sensor spots into a cyclic olefin copolymer (COC)-based microfluidic platform. Results of our nanotoxicological study, including two physiological cell barriers that are essential in the protection from exogenous factors, the intestine (Caco-2) and the vasculature (HUVECs) showed that the assessment of the cells' total energy metabolism is ideally suited to rapidly detect cytotoxicities. Additional viability assay verification using state-of-the-art dye exclusion assays for nanotoxicology demonstrated the similarity and comparability of our results, thus highlighting the benefits of employing a compact and cost-efficient microfluidic dual-sensor platform as a pre-screening tool in nanomaterial risk assessment and as a rapid quality control measure in medium to high-throughput settings.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Células CACO-2 , Humanos , Concentración de Iones de Hidrógeno , Oxígeno
12.
Int J Cancer ; 146(2): 577-588, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31271443

RESUMEN

The Mediator complex is a transcriptional regulator interacting with transcription factors and RNA-polymerase-II. Recently, we identified its subunit CDK19 to be specifically expressed in prostate cancer (PCa) and to be functionally implicated in PCa aggressiveness. Aim of our study was to comprehensively characterize the protein expression of CDK19 and its paralog CDK8 in PCa. We performed immunohistochemistry (IHC) for CDK19/CDK8 on a large cohort including needle biopsies from 202 patients, 799 primary tumor foci of radical prostatectomy specimens from 415 patients, 120 locally advanced tumor foci obtained by palliative transurethral resection, 140 lymph node metastases, 67 distant metastases and 82 benigns. Primary tumors were stained for the proliferation marker Ki67, androgen receptor (AR) and ERG. For 376 patients, clinic-pathologic data were available. Primary endpoint was disease-recurrence-free survival (DFS). Nuclear CDK19 and CDK8 expression increases during progression showing the highest intensity in metastatic and castration-resistant tumors. High CDK19 expression on primary tumors correlates with DFS independently from Gleason grade and PSA. Five-year-DFS rates of patients with primary tumors expressing no, moderate and high CDK19 are 73.7, 56.9 and 30.4%, respectively. CDK19 correlates with Gleason grade, T-stage, Ki67 proliferation-index, nuclear AR expression and ERG-status. Therapeutic options for metastatic and castration-resistant PCa remain limited. In the current study, we confirmed an important role of the Mediator subunit CDK19 in advanced PCa supporting current developments to target CDK19 and its paralog CDK8. Furthermore, CDK19 protein expression has the potential to predict disease recurrence independently from established biomarkers thus contributing to individual management for PCa patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Recurrencia Local de Neoplasia/diagnóstico , Neoplasias de la Próstata/patología , Biopsia , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Estudios de Seguimiento , Humanos , Estimación de Kaplan-Meier , Masculino , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico , Próstata/patología , Próstata/cirugía , Prostatectomía , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/cirugía
13.
Urol Oncol ; 37(9): 576.e1-576.e10, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31178279

RESUMEN

INTRODUCTION: Simply applicable biomarkers for prostate cancer patients predicting the clinical course are urgently needed. Recently, TRIM24 has been identified to promote androgen receptor signaling and to correlate with an aggressive prostate cancer phenotype. Based on these data, we proofed TRIM24 as a prognostic biomarker for risk stratification. MATERIALS AND METHODS: We performed TRIM24 immunohistochemistry on 2 independent cohorts including a total of 806 primary tumors, 26 locally advanced/recurrent tumors, 30 lymph node metastases, 30 distant metastases, and 129 benign prostatic samples from 497 patients as well as on 246 prostate needle biopsies. Expression data were correlated with clinic-pathological data including biochemical recurrence-free survival (bRFS) as endpoint. RESULTS: Benign samples show no or low TRIM24 expression in 94%, while tumor tissues demonstrate significant higher levels. Strongest expression is observed in advanced and metastatic tumors. In multivariate analyses, TRIM24 up-regulation on radical prostatectomy specimens correlates with shorter bRFS independent of other prognostic parameters. 5-(10-) year bRFS rates for TRIM24 negative, low, medium and high expressing tumors are 93.1(93.1)%, 75.4(68.5)%, 54.9(47.5)% and 43.1(32.3)%, respectively. Of interest, tumors diagnosed as indolent disease, TRIM24 expression stratifies patients into specific risk groups. Increased TRIM24 expression associates with higher grade group, positive nodal status and extraprostatic tumor growth. TRIM24 assessment on prostate needle biopsies taken prior to treatment decision at time of initial diagnosis significantly correlates with recurrence after surgery. CONCLUSION: Using 2 large independent radical prostatectomy specimen cohorts, we found that TRIM24 expression predicts patients' risk to develop disease recurrence with high accuracy and independent from other established biomarkers. Further, this is the first study exploring TRIM24 expression on prostate needle biopsies which represents the clinically relevant tissue type on which biomarkers guide treatment decisions. Thus, we strongly suggest introducing TRIM24 evaluation in prostate needle biopsies in clinical routine as an inexpensive and simple immunohistochemical test.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/genética , Inmunohistoquímica/métodos , Neoplasias de la Próstata/genética , Dedos de Zinc/genética , Estudios de Cohortes , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/patología
14.
Front Oncol ; 8: 623, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619757

RESUMEN

Background: Stratifying prostate cancer (PCa) patients into risk groups at time of initial diagnosis enabling a risk-adapted disease management is still a major clinical challenge. Existing studies evaluating the prognostic potential of PSMA (prostate-specific membrane antigen) for PCa were performed on radical prostatectomy specimens (RPE), i.e., decision making for disease management was already completed at time of sample analysis. Aim of our study was to assess the prognostic value of PSMA expression for PCa patients on biopsies at time of initial diagnosis. Methods: PSMA expression was assessed by immunohistochemistry on 294 prostate biopsies with corresponding RPE, 621 primary tumor foci from 242 RPE, 43 locally advanced or recurrent tumors, 34 lymph node metastases, 78 distant metastases and 52 benign prostatic samples. PSMA expression was correlated with clinico-pathologic features. Primary endpoint was recurrence free survival. Other clinicopathologic features included WHO/ISUP grade groups, PSA serum level, TNM-stage, and R-status. Chi-square test, ANOVA-analyses, Cox-regression, and log-rank tests were performed for statistical analyses. Results: High PSMA expression on both biopsy and RPE significantly associates with a higher risk of disease recurrence following curative surgery. The 5-year-recurrence free survival rates were 88.2, 74.2, 67.7 and 26.8% for patients exhibiting no, low, medium, or high PSMA expression on biopsy, respectively. High PSMA expression on biopsy was significant in multivariate analysis predicting a 4-fold increased risk of disease recurrence independently from established prognostic markers. PSMA significantly increases during PCa progression. Conclusion: PSMA is an independent prognostic marker on biopsies at time of initial diagnosis and can predict disease recurrence following curative therapy for PCa. Our study proposes the application of the routinely used IHC marker PSMA for outcome prediction and decision making in risk-adapted PCa management on biopsies at time of initial diagnosis.

15.
Sci Rep ; 7(1): 14804, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093542

RESUMEN

The human protease family HtrA is responsible for preventing protein misfolding and mislocalization, and a key player in several cellular processes. Among these, HtrA1 is implicated in several cancers, cerebrovascular disease and age-related macular degeneration. Currently, HtrA1 activation is not fully characterized and relevant for drug-targeting this protease. Our work provides a mechanistic step-by-step description of HtrA1 activation and regulation. We report that the HtrA1 trimer is regulated by an allosteric mechanism by which monomers relay the activation signal to each other, in a PDZ-domain independent fashion. Notably, we show that inhibitor binding is precluded if HtrA1 monomers cannot communicate with each other. Our study establishes how HtrA1 trimerization plays a fundamental role in proteolytic activity. Moreover, it offers a structural explanation for HtrA1-defective pathologies as well as mechanistic insights into the degradation of complex extracellular fibrils such as tubulin, amyloid beta and tau that belong to the repertoire of HtrA1.


Asunto(s)
Serina Peptidasa A1 que Requiere Temperaturas Altas/química , Multimerización de Proteína , Proteolisis , Regulación Alostérica , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Humanos , Dominios Proteicos , Relación Estructura-Actividad , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Assay Drug Dev Technol ; 15(4): 167-177, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28631939

RESUMEN

A high-throughput screening (HTS) assay was developed for cotransporter, NKCC1, which is a potential target for the treatment of diverse disorders. This nonradioactive rubidium flux assay coupled with ion channel reader series provides a working screen for this target expressed in human embryonic kidney (HEK) cell line. An eightfold window of detection was achieved with the optimized assay. This new functional assay offered a robust working model for NKCC1 in determining reliable and concordant rank orders of the test compounds supporting its sensitivity and specificity. The robustness of manual assay indicated by Z' of 0.9 qualified its amenability to automation. The Z' of 0.7 was displayed by automated assay employed in high-throughput screening of compound libraries against this target. Being electrically neutral, the NKCC1 screening is difficult to achieve by both manual and automated electrophysiological techniques. These techniques, although considered gold standard, suffer from their inherent problems of being too slow to be in high-throughput format and with high running costs. In addition to being a functional assay for NKCC1, it is nontoxic as compared with thallium flux assay, which is prone to generate high number of false-positive/false-negative rates because of its innate fluorescence issues.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Rubidio/análisis , Miembro 2 de la Familia de Transportadores de Soluto 12/análisis , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Rubidio/química , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
17.
IMA Fungus ; 3(1): 87-92, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23155503

RESUMEN

The vision of the European common research programme for 2014-2020, called Horizon 2020, is to create a smarter, more sustainable and more inclusive society. However, this is a global endeavor, which is important for mycologists all over the world because it includes a special role for fungi and fungal products. After ten years of research on industrial scale conversion of biowaste, the conclusion is that the most efficient and gentle way of converting recalcitrant lignocellulosic materials into high value products for industrial purposes, is through the use of fungal enzymes. Moreover, fungi and fungal products are also instrumental in producing fermented foods, to give storage stability and improved health. Climate change will lead to increasingly severe stress on agricultural production and productivity, and here the solution may very well be that fungi will be brought into use as a new generation of agricultural inoculants to provide more robust, more nutrient efficient, and more drought tolerant crop plants. However, much more knowledge is required in order to be able to fully exploit the potentials of fungi, to deliver what is needed and to address the major global challenges through new biological processes, products, and solutions. This knowledge can be obtained by studying the fungal proteome and metabolome; the biology of fungal RNA and epigenetics; protein expression, homologous as well as heterologous; fungal host/substrate relations; physiology, especially of extremophiles; and, not the least, the extent of global fungal biodiversity. We also need much more knowledge and understanding of how fungi degrade biomass in nature.The projects in our group in Aalborg University are examples of the basic and applied research going on to increase the understanding of the biology of the fungal secretome and to discover new enzymes and new molecular/bioinformatics tools.However, we need to put Mycology higher up on global agendas, e.g. by positioning Mycology as a candidate for an OECD Excellency Program. This could pave the way for increased funding of international collaboration, increased global visibility, and higher priority among decision makers all over the world.

18.
Environ Microbiol ; 14(6): 1477-87, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22469289

RESUMEN

Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.


Asunto(s)
Agaricales/fisiología , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Microbiología del Suelo , Madera/metabolismo , Agaricales/crecimiento & desarrollo , Agaricales/metabolismo , Biodegradación Ambiental , Carbono/metabolismo , Ecosistema , Micorrizas/química , Micorrizas/crecimiento & desarrollo , Micorrizas/metabolismo , Micorrizas/fisiología , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas/metabolismo , Plantas/microbiología , Simbiosis , Árboles/metabolismo , Árboles/microbiología
19.
Mol Cell Biochem ; 357(1-2): 199-207, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21638028

RESUMEN

Phosphorylation of Tau at serine 422 promotes Tau aggregation. The kinase that is responsible for this key phosphorylation event has so far not been identified but could be a potential drug target for Alzheimer's disease. We describe here an assay strategy to identify this kinase. Using a combination of screening a library of 65'000 kinase inhibitors and in vitro inhibitor target profiling of the screening hits using the Ambit kinase platform, MKK4 was identified as playing a key role in Tau-S422 phosphorylation in human neuroblastoma cells.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Serina/metabolismo , Proteínas tau/metabolismo , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Estructura Molecular , Fosforilación , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Serina/química
20.
Chemistry ; 17(23): 6369-81, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21538606

RESUMEN

L-Dopa, the standard therapeutic for Parkinson's disease, is inactivated by the enzyme catechol-O-methyltransferase (COMT). COMT catalyzes the transfer of an activated methyl group from S-adenosylmethionine (SAM) to its catechol substrates, such as L-dopa, in the presence of magnesium ions. The molecular recognition properties of the SAM-binding site of COMT have been investigated only sparsely. Here, we explore this site by structural alterations of the adenine moiety of bisubstrate inhibitors. The molecular recognition of adenine is of special interest due to the great abundance and importance of this nucleobase in biological systems. Novel bisubstrate inhibitors with adenine replacements were developed by structure-based design and synthesized using a nucleosidation protocol introduced by Vorbrüggen and co-workers. Key interactions of the adenine moiety with COMT were measured with a radiochemical assay. Several bisubstrate inhibitors, most notably the adenine replacements thiopyridine, purine, N-methyladenine, and 6-methylpurine, displayed nanomolar IC(50) values (median inhibitory concentration) for COMT down to 6 nM. A series of six cocrystal structures of the bisubstrate inhibitors in ternary complexes with COMT and Mg(2+) confirm our predicted binding mode of the adenine replacements. The cocrystal structure of an inhibitor bearing no nucleobase can be regarded as an intermediate along the reaction coordinate of bisubstrate inhibitor binding to COMT. Our studies show that solvation varies with the type of adenine replacement, whereas among the adenine derivatives, the nitrogen atom at position 1 is essential for high affinity, while the exocyclic amino group is most efficiently substituted by a methyl group.


Asunto(s)
Adenina/química , Inhibidores de Catecol O-Metiltransferasa , Catecol O-Metiltransferasa/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Enfermedad de Parkinson/tratamiento farmacológico , Catálisis , Dominio Catalítico , Catecol O-Metiltransferasa/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Concentración 50 Inhibidora , Cinética , Modelos Moleculares , Estructura Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA