Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 590-591: 430-439, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28292609

RESUMEN

Oxidation and removal of organic micropollutants (OMPs) on ultrapure (UPW) and natural water (NW) by ozone (O3) and ozone/powdered activated carbon (O3/PAC) have been studied. The OMPs atrazine (ATZ, herbicide), carbamazepine (CBZ, anticonvulsant), diclofenac (DCL, anti-inflammatory) and triclosan (TCS, antimicrobial) are incorporated continuously and uncontrolled on water treatment systems (e.g., drinking water treatment plants, wastewater treatment plants). Batch experiments on ultrapure and natural water showed that ATZ treated with O3 and O3/PAC has the slowest transformation rate (>90% at 30min reaction) while CBZ, DCL and TCS were oxidized very fast (>90% at ~5min). The radical scavenger tert-Butyl alcohol (TBA) was used to evaluate the contribution of HO on the OMPs oxidation. TBA, a hydrophilic compound with low adsorbability, was used as a strong HO scavenger to assess the role of the OH radical in the oxidation of the OMPs studied. ATZ oxidation was mainly driven by OH radicals. On the contrary, CBZ, DCL and TCS were removed by direct reaction with ozone. Infrared analysis (FTIR) showed changes in the PAC surface functional groups of the carbon exposed to ozone, decreasing its basic properties. The acute toxicity assays of the OMPs mixture dissolved in UPW performed with D. magna was significantly reduced by ozonation. The addition of PAC to the ozonation process, strongly improved the acute toxicity removal. Short chain mono- and di-carboxylic acids were identified as some of the oxidation intermediates formed during ozone treatment.

2.
Water Res ; 98: 109-18, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27085962

RESUMEN

Organic micropollutants (OMPs) are ubiquitous in natural waters even in places where the human activity is limited. The presence of OMPs in natural water sources for human consumption encourages the evaluation of different water purification technologies to ensure water quality. In this study, the Biobío river (Chile) was selected since the watershed includes urban settlements and economic activities (i.e. agriculture, forestry) that incorporate a variety of OMPs into the aquatic environment, such as pesticides, pharmaceuticals and personal care products. Atrazine (herbicide), caffeine (psychotropic), diclofenac (anti-inflammatory) and triclosan (antimicrobial) in Biobío river water and in different stages of a drinking and two wastewater treatment plants downstream Biobío river were determined using solid phase extraction (SPE) and liquid chromatography/tandem mass spectrometry (LC-MS/MS) and electrospray ionization (ESI). Quantification of these four compounds showed concentrations in the range of 8 ± 2 to 55 ± 10 ng L(-1) in Biobío river water, 11 ± 2 to 74 ± 21 ng L(-1) in the drinking water treatment plant, and 60 ± 10 to 15,000 ± 1300 ng L(-1) in the wastewater treatment plants. Caffeine was used as an indicator of wastewater discharges. Because conventional water treatment technologies are not designed to eliminate some emerging organic pollutants, alternative treatment processes, UV and UV/H2O2, were employed. The transformation of atrazine, carbamazepine (antiepileptic), diclofenac and triclosan was investigated at laboratory scale. Both processes were tested at different UV doses and the Biobío river water matrix effects were evaluated. Initial H2O2 concentration used was 10 mg L(-1). Results showed that, the transformation profile obtained using UV/H2O2 at UV doses up to 900 mJ cm(-2), followed the trend of diclofenac > triclosan > atrazine > carbamazepine. Furthermore acute toxicity tests with Daphnia magna were carried out after UV/H2O2 treatments of the OMPs mixture studied. At the lower UV doses tested (300 mJ cm(-2)) a higher toxicity was observed, suggesting the formation of toxic intermediates in the course of the reaction. As expected, at higher UV doses the toxicity declined. Considering the treatment of the mixture of ATZ, CBZ, DCL and TCS with a UV dose of 1200 mJ cm(-2) and 10 mg L(-1) of H2O2 the acute toxicity results exhibits values for Daphnia magna immobilization equal to 20 and 42% evaluated after 24 and 48 h, respectively.


Asunto(s)
Monitoreo del Ambiente , Peróxido de Hidrógeno , Animales , Humanos , Ríos/química , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/química
3.
Water Res ; 43(15): 3787-96, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19577267

RESUMEN

The effective removal of emerging contaminants of concern (ECCs) such as endocrine-disrupting chemicals, pharmaceutically active compounds, personal care products, and flame retardants is a desirable water treatment goal. In this study, one activated carbon, one carbonaceous resin, and two high-silica zeolites were studied to evaluate their effectiveness for the removal of an ECC mixture from lake water. Adsorption isotherm experiments were performed with a mixture of 28 ECCs at environmentally relevant concentrations ( approximately 200-900 ng/L). Among the tested adsorbents, activated carbon was the most effective, and activated carbon doses typically used for taste and odor control in drinking water (<10 mg/L) were sufficient to achieve a 2-log removal for most of the tested ECCs. The carbonaceous resin was less effective than the activated carbon because this adsorbent had a smaller volume of pores in the size range required for the adsorption of many ECCs ( approximately 6-9A). For the removal of ECC mixture constituents, zeolites were less effective than the carbonaceous adsorbents. Because zeolites contain pores of uniform size and shape, a few of the tested ECCs with matching pore size/shape requirements were well removed, but the adsorptive removal of others was negligible, even at zeolite doses of 100 mg/L. The results of this study demonstrate that effective adsorbents for the removal of a broad spectrum of ECCs from water should exhibit heterogeneity in pore size and shape and a large pore volume in the 6-9A size range.


Asunto(s)
Agua Dulce/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Zeolitas/química , Adsorción , Disruptores Endocrinos/análisis , Preparaciones Farmacéuticas/análisis , Zeolitas/clasificación
4.
Water Res ; 42(8-9): 2287-99, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18222520

RESUMEN

Widespread use of the fuel additive methyl tertiary-butyl ether (MTBE) has led to frequent MTBE detections in North American and European drinking water sources. The overall objective of this research was to evaluate the effectiveness of a silicalite zeolite, a carbonaceous resin, and a coconut-shell-based granular activated carbon (GAC) for the removal of MTBE from water. Isotherm and short bed adsorber tests were conducted in ultrapure water and river water to obtain parameters describing MTBE adsorption equilibria and kinetics and to quantify the effect of natural organic matter (NOM) on MTBE adsorption. Both the silicalite zeolite and the carbonaceous resin exhibited larger MTBE adsorption uptakes than the tested GAC. Surface diffusion coefficients describing intraparticle MTBE mass transfer rates were largest for the GAC and smallest for the carbonaceous resin. Pilot tests were conducted to verify MTBE breakthrough curve predictions obtained with the homogeneous surface diffusion model and to evaluate the effect of NOM preloading on packed bed adsorber performance. Results showed that GAC was the most cost-competitive adsorbent when considering adsorbent usage rate only; however, the useful life of an adsorber containing silicalite zeolite was predicted to be approximately 5-6 times longer than that of an equally sized adsorber containing GAC. Pilot column results also showed that NOM preloading did not impair the MTBE removal efficiency of the silicalite zeolite. Thus, it may be possible to regenerate spent silicalite with less energy-intensive methods than those required to regenerate GAC.


Asunto(s)
Éteres Metílicos/química , Abastecimiento de Agua/análisis , Adsorción , Cinética , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA