RESUMEN
Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68ï¼/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-αï¼ cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.
RESUMEN
Overexpression of human epidermal growth factor receptor-2 (HER-2) occurs in 20% of all breast cancer subtypes, especially those that present the worst prognostic outcome through a very invasive and aggressive tumour. HCC-1954 (HER-2+) is a highly invasive, metastatic cell line, whereas MCF-7 is mildly aggressive and non-invasive. We investigated membrane proteins from both cell lines that could have a pivotal biological significance in metastasis. Membrane protein enrichment for HCC-1954 and MCF-7 proteomic analysis was performed. The samples were analysed and quantified by mass spectrometry. High abundance membrane proteins were confirmed by Western blot, immunofluorescence, and flow cytometry. Protein interaction prediction and correlations with the Cancer Genome Atlas (TCGA) patient data were conducted by bioinformatic analysis. In addition, ß1 integrin expression was analysed by Western blot in cells upon trastuzumab treatment. The comparison between HCC-1954 and MCF-7 membrane-enriched proteins revealed that proteins involved in cytoskeleton organisation, such as HER-2, αv and ß1 integrins, E-cadherin, and CD166 were more abundant in HCC-1954. ß1 integrin membrane expression was higher in the HCC-1954 cell line resistant after trastuzumab treatment. TCGA data analysis showed a trend toward a positive correlation between HER-2 and ß1 integrin in HER-2+ breast cancer patients. Differences in protein profile and abundance reflected distinctive capabilities for aggressiveness and invasiveness between HCC-1954 and MCF-7 cell line phenotypes. The higher membrane ß1 integrin expression after trastuzumab treatment in the HCC-1954 cell line emphasised the need for investigating the contribution of ß1 integrin modulation and its effect on the mechanism of trastuzumab resistance.
Asunto(s)
Neoplasias de la Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de la Mama/metabolismo , Cadherinas/genética , Línea Celular Tumoral , Femenino , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Células MCF-7 , Proteómica , Trastuzumab/farmacología , Trastuzumab/uso terapéuticoRESUMEN
Titanium (Ti) and its alloys are widely used in dental implants and hip-prostheses due to their excellent biocompatibility. Growing evidence support that surface degradation due to corrosion and wear processes, contribute to implant failure, since the release of metallic ions and wear particles generate local tissue reactions (peri-implant inflammatory reactions). The generated ions and wear debris (particles at the micron and nanoscale) stay, in a first moment, at the interface implant-bone. However, depending on their size, they can enter blood circulation possibly contributing to systemic reactions and toxicities. Most of the nanotoxicological studies with titanium dioxide nanoparticles (TiO2 NPs) use conventional two-dimensional cell culture monolayers to explore macrophage and monocyte activation, where limited information regarding bone cells is available. Recently three-dimensional models have been gaining prominence since they present a greater anatomical and physiological relevance. Taking this into consideration, in this work we developed a human osteoblast-like spheroid model, which closely mimics bone cell-cell interactions, providing a more realistic scenario for nanotoxicological studies. The treatment of spheroids with different concentrations of TiO2 NPs during 72 h did not change their viability significantly. Though, higher concentrations of TiO2 NPs influenced osteoblast cell cycle without interfering in their ability to differentiate and mineralize. For higher concentration of TiO2 NPs, collagen deposition and pro-inflammatory cytokine, chemokine and growth factor secretion (involved in osteolysis and bone homeostasis) increased. These results raise the possible use of this model in nanotoxicological studies of osseointegrated devices and demonstrate a possible therapeutic potential of this TiO2 NPs to prevent or reverse bone resorption.
Asunto(s)
Nanopartículas/toxicidad , Osteoblastos/citología , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Titanio/farmacología , Titanio/toxicidad , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Homeostasis/efectos de los fármacos , Humanos , Minerales/metabolismo , Esferoides Celulares/metabolismo , Titanio/químicaRESUMEN
Bone marrow stromal cells (BMSCs) are considered a promising tool for bone bioengineering. However, the mechanisms controlling osteoblastic commitment are still unclear. Osteogenic differentiation of BMSCs requires the activation of ß-catenin signaling, classically known to be regulated by the canonical Wnt pathway. However, BMSCs treatment with canonical Wnts in vitro does not always result in osteogenic differentiation and evidence indicates that a more complex signaling pathway, involving cadherins, would be required to induce ß-catenin signaling in these cells. Here we showed that Wnt3a alone did not induce TCF activation in BMSCs, maintaining the cells at a proliferative state. On the other hand, we verified that, upon BMSCs osteoinduction with dexamethasone, cadherins were cleaved by the PS1/γ-secretase complex at the plasma membrane, and this event was associated with an enhanced ß-catenin translocation to the nucleus and signaling. When PS1/γ-secretase activity was inhibited, the osteogenic process was impaired. Altogether, we provide evidence that PS1/γ-secretase-mediated cadherin cleavage has as an important role in controlling ß-catenin signaling during the onset of BMSCs osteogenic differentiation, as part of a complex signaling pathway responsible for cell fate decision. A comprehensive map of these pathways might contribute to the development of strategies to improve bone repair.
RESUMEN
BACKGROUND AND AIMS: Mesenchymal stromal cells (MSCs) were shown to have immunomodulatory activity and have been applied for treating immune-mediated disorders. We compared the homing and therapeutic action of cryopreserved subcutaneous adipose tissue (AT-MSCs) and bone marrow-derived mesenchymal stromal cells (BM-MSCs) in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. METHODS: After colonoscopic detection of inflammation AT-MSCs or BM-MSCs were injected intraperitoneally. Colonoscopic and histologic scores were obtained. Density of collagen fibres and apoptotic rates were evaluated. Cytokine levels were measured in supernatants of colon explants. For cell migration studies MSCs and skin fibroblasts were labelled with Tc-99m or CM-DiI and injected intraperitonealy or intravenously. RESULTS: Intraperitoneal injection of AT-MSCs or BM-MSCs reduced the endoscopic and histopathologic severity of colitis, the collagen deposition, and the epithelial apoptosis. Levels of TNF-α and interleukin-1ß decreased, while VEGF and TGF-ß did not change following cell-therapy. Scintigraphy showed that MSCs migrated towards the inflamed colon and the uptake increased from 0.5 to 24 h. Tc-99m-MSCs injected intravenously distributed into various organs, but not the colon. Cm-DiI-positive MSCs were detected throughout the colon wall 72 h after inoculation, predominantly in the submucosa and muscular layer of inflamed areas. CONCLUSIONS: Intraperitoneally injected cryopreserved MSCs home to and engraft into the inflamed colon and ameliorate TNBS-colitis.
Asunto(s)
Movimiento Celular , Colitis/terapia , Colon/patología , Criopreservación , Inflamación/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Apoptosis , Células de la Médula Ósea/citología , Linaje de la Célula , Colitis/complicaciones , Colitis/patología , Colágeno/metabolismo , Colonoscopía , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Inflamación/complicaciones , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Mucosa Intestinal/patología , Masculino , Ratas , Ratas Wistar , Grasa Subcutánea/citología , Ácido Trinitrobencenosulfónico , Cicatrización de HeridasRESUMEN
BACKGROUND: Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow-derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. METHODOLOGY/PRINCIPAL FINDINGS: A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34(+) cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34(+) cells was decreased. CONCLUSIONS/SIGNIFICANCE: Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation.
Asunto(s)
Movimiento Celular , Proliferación Celular , Células Madre Hematopoyéticas/citología , Osteoblastos/citología , Células del Estroma/citología , Adulto , Animales , Antígenos CD34/análisis , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Células Cultivadas , Quimiocina CXCL12/genética , Técnicas de Cocultivo , Sangre Fetal/citología , Citometría de Flujo , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Humanos , Recién Nacido , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Microscopía Electrónica , Osteoblastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Esferoides Celulares/ultraestructura , Células del Estroma/metabolismoRESUMEN
In embryogenesis, coronary blood vessels are formed by vasculogenesis from epicardium-derived progenitors. Subsequently, growing or regenerating myocardium increases its vasculature by angiogenesis, forming new vessels from the pre-existing ones. Recently, cell therapies for myocardium ischemia that used different protocols have given promising results, using either extra-cardiac blood vessel cell progenitors or stimulating the cardiac angiogenesis. We have questioned whether cardiomyocytes could sustain both vasculogenesis and angiogenesis. We used a 3D culture model of tissue-like spheroids in co-cultures of cardiomyocytes supplemented either with endothelial cells or with bone marrow-derived mesenchymal stroma cells. Murine foetal cardiomyocytes introduced into non-adherent U-wells formed 3D contractile structures. They were coupled by gap junctions. Cardiomyocytes segregated inside the 3D structure into clumps separated by connective tissue septa, rich in fibronectin. Three vascular endothelial growth factor isoforms were produced (VEGF 120, 164 and 188). When co-cultured with human umbilical cord endothelial cells, vascular structures were produced in fibronectin-rich external layer and in radial septa, followed by angiogenic sprouting into the cardiomyocyte microtissue. Presence of vascular structures led to the maintenance of long-term survival and contractile capacity of cardiac microtissues. Conversely, bone marrow mesenchymal cells formed isolated cell aggregates, which progressively expressed the endothelial markers von Willebrand's antigen and CD31. They proceeded to typical vasculogenesis forming new blood vessels organised in radial pattern. Our results indicate that the in vitro 3D model of cardiomyocyte spheroids provides the two basic elements for formation of new blood vessels: fibronectin and VEGF. Within the myocardial environment, endothelial and mesenchymal cells can proceed to formation of new blood vessels either through angiogenesis or vasculogenesis, respectively.
Asunto(s)
Vasos Coronarios/fisiología , Células Endoteliales/citología , Células Madre Mesenquimatosas/citología , Miocitos Cardíacos/citología , Neovascularización Fisiológica , Animales , Vasos Sanguíneos/crecimiento & desarrollo , Técnicas de Cocultivo , Fibronectinas/biosíntesis , Ratones , Factor A de Crecimiento Endotelial Vascular/biosíntesisRESUMEN
A terapia celular pode ser uma nova opção terapêutica para pacientes cardíacos, modificando o processo de remodelamento cardíaco e prevenindo a falência cardíaca pós-infarto. Estudos clínicos até o presente usaram células mononucleadas de medula óssea, isoladas por centrifugação em gradiente de densidade a partir de aspirados de medula óssea da crista ilíaca. Embora esta nova estratégia revolucionária pareça ser segura e melhorar a função cardíaca, resultados negativos surgiram desafiando o futuro de terapias baseadas em células para o reparo cardíaco. Aqui discutimos alguns resultados laboratoriais que podem explicar, pelo menos parcialmente, as diferenças obtidas em protocolos similares. Uma análise da correlação entre a composição celular da fração mononuclear do aspirado da medula óssea e o êxito clínico da terapia indicou que os linfócitos não favorecem o reparo do miocárdio. Uma seleção negativa eliminando as linhagens do sistema imunitário pode ser proposta para melhorar a terapia celular do miocárdio.
Cell therapy may provide a novel therapeutic option for cardiac patients, modifying myocardium remodeling processes and preventing post-infarction heart failure. Currently clinical studies predominantly use bone marrow mononuclear cells isolated by density gradient centrifugation of iliac crest bone marrow aspirates. Although this revolutionary new strategy seems to be safe and to improve myocardial function, negative data have emerged challenging the future of cell-based therapy for heart repair. Here we discuss some laboratory data that might explain, at least in part, variations in outcomes using similar protocols. Analysis of the correlation between the cell composition of the mononuclear fraction of bone marrow aspirates and the clinical outcome of the therapy has indicated that cells of the lymphocyte lineage are not beneficial in myocardial regeneration. A proposal of selection to eliminate these cells may improve cell therapy of infarcted myocardium.
Asunto(s)
Humanos , Médula Ósea , Cardiomiopatías , Tratamiento Basado en Trasplante de Células y Tejidos , Células MadreRESUMEN
We describe cell therapy for severe ischemic heart failure using transendocardial injection of autologous bone-marrow-derived mononuclear cells. The treated patients had significantly less heart failure and angina, sustained significant improvement of pumping power, exercise capacity, cardiac muscle irrigation, and blood supply to the body. Electrical and mechanical mappings of the myocardium before and after the therapy, and anatomopathological examination of the myocardium of one of the patients that had deceased of a stroke eleven months after the treatment indicated sustained neoangiogenesis and improvement of activity and quantity of cardiomyocytes in the injected regions. Post-hoc analyses of injected cell phenotype and improvement of myocardial function indicate that presence of CD8+ and CD56+ cells does not correlate with good prognostics, suggesting a possibility of cell selection. For 'no-option' severe cardiac patients, significant benefits of cell therapy and absence of adverse effects may justify the application of bone-marrow-derived cell therapy.
Asunto(s)
Trasplante de Médula Ósea , Isquemia Miocárdica/terapia , Animales , Electrofisiología , Humanos , Miocitos Cardíacos/trasplanteRESUMEN
BACKGROUND: Cell-based therapies for treatment of ischemic heart disease are currently under investigation. We previously reported the results of a phase I trial of transendocardial injection of autologous bone marrow mononuclear (ABMM) cells in patients with end-stage ischemic heart disease. The current report focuses on postmortem cardiac findings from one of the treated patients, who died 11 months after cell therapy. METHODS AND RESULTS: Anatomicopathologic, morphometric, and immunocytochemical findings from the anterolateral ventricular wall (with cell therapy) were compared with findings from the interventricular septum (normal perfusion and no cell therapy) and from the inferoposterior ventricular wall (extensive scar tissue and no cell therapy). No signs of adverse events were found in the cell-injected areas. Capillary density was significantly higher (P<0.001) in the anterolateral wall than in the previously infarcted tissue in the posterior wall. The prominent vasculature of the anterolateral wall was associated with hyperplasia of pericytes, mural cells, and adventitia. Some of these cells had acquired cytoskeletal elements and contractile proteins (troponin, sarcomeric alpha-actinin, actinin), as well as the morphology of cardiomyocytes, and appeared to have migrated toward adjacent bundles of cardiomyocytes. CONCLUSIONS: Eleven months after treatment, morphological and immunocytochemical analysis of the sites of ABMM cell injection showed no abnormal cell growth or tissue lesions and suggested that an active process of angiogenesis was present in both the fibrotic cicatricial tissue and the adjacent cardiac muscle. Some of the pericytes had acquired the morphology of cardiomyocytes, suggesting long-term sequential regeneration of the cardiac vascular tree and muscle.
Asunto(s)
Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Insuficiencia Cardíaca/terapia , Isquemia Miocárdica/terapia , Miocardio/patología , Trasplante de Células Madre , Desmina/análisis , Insuficiencia Cardíaca/patología , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/patología , Neovascularización Fisiológica , Tomografía Computarizada de Emisión de Fotón Único , Trasplante AutólogoRESUMEN
We studied bone marrow stromal cell cultures from patients with childhood myelodysplastic syndromes (MDS, refractory anemia with excess of blasts, RAEB) and from matched normal donors. Stromal cell monolayers were characterized as myofibroblasts by the expression of smooth muscle alpha-actin, collagen IV, laminin and fibronectin. When normal cord blood cells were plated onto myelodysplastic stromas, a pathologic cell differentiation was observed, indicating altered myelosupportive properties. cDNA array analysis showed that patient stromas expressed increased levels of thrombospondin-1, collagen-I alpha2-chain, osteoblast-specific factor-2 and osteonectin, indicating the presence of increased osteoblast content, as confirmed by enhanced alkaline phosphatase synthesis. Alterations in the myelodysplastic stroma environment might contribute to abnormal hematopoiesis in this pathology.
Asunto(s)
Médula Ósea/patología , Regulación Neoplásica de la Expresión Génica , Hematopoyesis , Músculo Liso/patología , Síndromes Mielodisplásicos/patología , Células del Estroma/patología , Actinas/metabolismo , Fosfatasa Alcalina/metabolismo , Anemia Refractaria con Exceso de Blastos , Médula Ósea/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Niño , Preescolar , Colágeno Tipo IV/metabolismo , Femenino , Sangre Fetal/química , Sangre Fetal/metabolismo , Fibroblastos/patología , Fibronectinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Técnicas In Vitro , Lactante , Laminina/metabolismo , Masculino , Músculo Liso/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteoblastos/metabolismo , Preleucemia , Células del Estroma/metabolismoRESUMEN
Coelomic cavities are relatively isolated from the systemic circulation of blood cells. Resident cell populations have a proper phenotype and kinetics, maintaining their steady-state populations and their responsiveness to local inflammatory reactions, in which the number and quality of coelomic cells can be greatly increased and modified. We have addressed the question of whether the increase in cell infiltrate in the inflamed abdominal cavity is sustained by the proliferation of myeloid cells in the omentum, and if so what are the characteristics of the progenitor cells involved and how the omentum controls their proliferation and differentiation. In the omentum under normal conditions and with inflammation due to schistosomal infection we found that pluripotent early myeloid progenitors were capable of giving rise to all the myeloid lineages in clonogenic assays, but not to the totipotent blood stem cells. Besides the major haemopoietins (GM-CSF, M-CSF, G-CSF, IL-5), the omentum stroma constitutively expressed SDF-1 alpha, the chemokine which elicits homing of circulating early haemopoietic progenitors. While normal omentum stroma produced LIF, its expression was substituted by SCF in inflamed tissues. In the first situation a slow steady-state renewal of progenitors is potentially favoured, while their intense expansion may be predominant in the latter one. We propose that the increase in cells in the abdominal cavity in inflammatory reactions is due to the enhanced input and expansion of early myeloid progenitors sustaining the in situ production of abdominal cell populations, rather than to the input of systemic circulating inflammatory cells.