Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 51(13): 2264-76, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22614400

RESUMEN

Radiometric images taken in mid-wave and long-wave infrared bands are used as a basis for validating a sea surface bidirectional reflectance distribution function (BRDF) being implemented into MODTRAN 5 (Berk et al. [Proc. SPIE5806, 662 (2005)]). The images were obtained during the MIRAMER campaign that took place in May 2008 in the Mediterranean Sea near Toulon, France. When atmosphere radiances are matched at the horizon to remove possible calibration offsets, the implementation of the BRDF in MODTRAN produces good sea surface radiance agreement, usually within 2% and at worst 4% from off-glint azimuthally averaged measurements. Simulations also compare quite favorably to glint measurements. The observed sea radiance deviations between model and measurements are not systematic, and are well within expected experimental uncertainties. This is largely attributed to proper radiative coupling between the surface and the atmosphere implemented using the DISORT multiple scattering algorithm.

2.
Opt Lett ; 33(21): 2515-7, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18978905

RESUMEN

Ultraviolet and infrared conical emissions were observed during the filamentation in air of powerful femtosecond laser pulses produced by a portable terawatt laser system. The broadband spectrum was measured from 200 nm up to 14 microm and covered the complete optical transmission window of the atmosphere. The angularly resolved spectrum showed some X-wave structure across the frequency range analyzed. However, we demonstrated that the strong conical emission observed in the mid- and far-infrared is mainly owing to the four-wave mixing between the pump pulse and its blueshifted conical emission.

3.
J Opt Soc Am A Opt Image Sci Vis ; 22(11): 2442-53, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16302395

RESUMEN

A statistical sea surface specular BRDF (bidirectional reflectance distribution function) model is developed that includes mutual shadowing by waves, wave facet hiding, and projection weighting. The integral form of the model is reduced to an analytical form by making minor and justifiable approximations. The new form of the BRDF thus allows one to compute sea reflected radiance more than 100 times faster than the traditional numerical solutions. The repercussions of the approximations used in the model are discussed. Using the analytical form of the BRDF, an analytical approximation is also obtained for the reflected sun radiance that is always good to within 1% of the numerical solution for sun elevations of more than 10 degrees above the horizon. The model is validated against measured sea radiances found in the literature and is shown to be in very good agreement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA