Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiome ; 7(1): 79, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122279

RESUMEN

The skin constitutes the primary physical barrier between vertebrates and their external environment. Characterization of skin microorganisms is essential for understanding how a host evolves in association with its microbial symbionts, modeling immune system development, diagnosing illnesses, and exploring the origins of potential zoonoses that affect humans. Although many studies have characterized the human microbiome with culture-independent techniques, far less is known about the skin microbiome of other mammals, amphibians, birds, fish, and reptiles. The aim of this review is to summarize studies that have leveraged high-throughput sequencing to better understand the skin microorganisms that associate with members of classes within the subphylum Vertebrata. Specifically, links will be explored between the skin microbiome and vertebrate characteristics, including geographic location, biological sex, animal interactions, diet, captivity, maternal transfer, and disease. Recent literature on parallel patterns between host evolutionary history and their skin microbial communities, or phylosymbiosis, will also be analyzed. These factors must be considered when designing future microbiome studies to ensure that the conclusions drawn from basic research translate into useful applications, such as probiotics and successful conservation strategies for endangered and threatened animals.


Asunto(s)
Microbiota , Piel/microbiología , Vertebrados/microbiología , Animales , Bacterias/clasificación , Evolución Biológica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
2.
Proc Natl Acad Sci U S A ; 115(25): E5786-E5795, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29871947

RESUMEN

Skin is the largest organ of the body and represents the primary physical barrier between mammals and their external environment, yet the factors that govern skin microbial community composition among mammals are poorly understood. The objective of this research was to generate a skin microbiota baseline for members of the class Mammalia, testing the effects of host species, geographic location, body region, and biological sex. Skin from the back, torso, and inner thighs of 177 nonhuman mammals was sampled, representing individuals from 38 species and 10 mammalian orders. Animals were sampled from farms, zoos, households, and the wild. The DNA extracts from all skin swabs were amplified by PCR and sequenced, targeting the V3-V4 regions of bacterial and archaeal 16S rRNA genes. Previously published skin microbiome data from 20 human participants, sampled and sequenced using an identical protocol to the nonhuman mammals, were included to make this a comprehensive analysis. Human skin microbial communities were distinct and significantly less diverse than all other sampled mammalian orders. The factor most strongly associated with microbial community data for all samples was whether the host was a human. Within nonhuman samples, host taxonomic order was the most significant factor influencing skin microbiota, followed by the geographic location of the habitat. By comparing the congruence between host phylogeny and microbial community dendrograms, we observed that Artiodactyla (even-toed ungulates) and Perissodactyla (odd-toed ungulates) had significant congruence, providing evidence of phylosymbiosis between skin microbial communities and their hosts.


Asunto(s)
Bacterias/genética , Mamíferos/microbiología , Microbiota/genética , Piel/microbiología , Simbiosis/genética , Animales , ADN/genética , Humanos , Filogenia , ARN Ribosómico 16S/genética
3.
mSystems ; 2(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28761935

RESUMEN

Distinct microbial communities inhabit individuals as part of the human skin microbiome and are continually shed to the surrounding environment. Microbial communities from 17 skin sites of 10 sexually active cohabiting couples (20 individuals) were sampled to test whether cohabitation impacts an individual's skin microbiome, leading to shared skin microbiota among partner pairs. Amplified 16S rRNA genes of bacteria and archaea from a total of 340 skin swabs were analyzed by high-throughput sequencing, and the results demonstrated that cohabitation was significantly associated with microbial community composition, although this association was greatly exceeded by characteristics of body location and individuality. Random forest modeling demonstrated that the partners could be predicted 86% of the time (P < 0.001) based on their skin microbiome profiles, which was always greater than combinations of incorrectly matched partners. Cohabiting couples had the most similar overall microbial skin communities on their feet, according to Bray-Curtis distances. In contrast, thigh microbial communities were strongly associated with biological sex rather than cohabiting partner. Additional factors that were associated with the skin microbiome of specific body locations included the use of skin care products, pet ownership, allergies, and alcohol consumption. These baseline data identified links between the skin microbiome and daily interactions among cohabiting individuals, adding to known factors that shape the human microbiome and, by extension, its relation to human health. IMPORTANCE Our work characterizes the influence of cohabitation as a factor influencing the composition of the skin microbiome. Although the body site and sampled individual were stronger influences than other factors collected as metadata in this study, we show that modeling of detected microbial taxa can help with correct identifications of cohabiting partners based on skin microbiome profiles using machine learning approaches. These results show that a cohabiting partner can significantly influence our microbiota. Follow-up studies will be important for investigating the implications of shared microbiota on dermatological health and the contributions of cohabiting parents to the microbiome profiles of their infants.

4.
FEMS Microbiol Lett ; 363(7)2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26946536

RESUMEN

Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 µM) and methylene blue hydrate (3 µM) was comparable to carboxy-PTIO (100 µM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway.


Asunto(s)
Amoníaco/metabolismo , Archaea/efectos de los fármacos , Archaea/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Óxido Nítrico/metabolismo , Microbiología del Suelo , Amoníaco/antagonistas & inhibidores , Bencenosulfonatos/farmacología , Benzoatos/farmacología , Betaproteobacteria/efectos de los fármacos , Betaproteobacteria/metabolismo , Ácidos Cafeicos/farmacología , Cromanos/farmacología , Curcumina/farmacología , Imidazoles/farmacología , Nitrificación , Nitrosomonas europaea/efectos de los fármacos , Nitrosomonas europaea/metabolismo , Oxidación-Reducción/efectos de los fármacos , Filogenia
5.
Microbiome ; 3: 66, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620848

RESUMEN

BACKGROUND: Microorganisms are distributed on surfaces within homes, workplaces, and schools, with the potential to impact human health and disease. University campuses represent a unique opportunity to explore the distribution of microorganisms within built environments because of high human population densities, throughput, and variable building usage. For example, the main campus of the University of Waterloo spans four square kilometres, hosts over 40,000 individuals daily, and is comprised of a variety of buildings, including lecture halls, gyms, restaurants, residences, and a daycare. RESULTS: Representative left and right entrance door handles from each of the 65 buildings at the University of Waterloo were swabbed at three time points during an academic term in order to determine if microbial community assemblages coincided with building usage and whether these communities are stable temporally. Across all door handles, the dominant phyla were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, which comprised 89.0 % of all reads. A total of 713 genera were observed, 16 of which constituted a minimum of 1 % of the 2,458,094 classified and rarefied reads. Archaea were found in low abundance (~0.03 %) but were present on 42.8 % of the door handles on 96 % of buildings across all time points, indicating that they are ubiquitous at very low levels on door handle surfaces. Although inter-handle variability was high, several individual building entrances harbored distinct microbial communities that were consistent over time. The presence of visible environmental debris on a subset of handles was associated with distinct microbial communities (beta diversity), increased richness (alpha diversity), and higher biomass (adenosine 5'-triphosphate; ATP). CONCLUSIONS: This study demonstrates highly variable microbial communities associated with frequently contacted door handles on a university campus. Nonetheless, the data also revealed several building-specific and temporally stable bacterial and archaeal community patterns, with a potential impact of accumulated debris, a possible result of low human throughput, on detected microbial communities.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Microbiología Ambiental , Consorcios Microbianos , Universidades , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Bacterias/aislamiento & purificación , Biodiversidad , Biopelículas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Consorcios Microbianos/genética , Filogenia , Filogeografía , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Piel/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA