Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(8): 112879, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37537844

RESUMEN

Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of children with neuroblastoma develop opsoclonus myoclonus ataxia syndrome (OMAS), a paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity but typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and tumor-infiltrating T and B cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-OMAS-associated neuroblastomas. We found greater B and T cell infiltration in OMAS-associated tumors compared to controls and showed that both were polyclonal expansions. Tertiary lymphoid structures (TLSs) were enriched in OMAS-associated tumors. We identified significant enrichment of the major histocompatibility complex (MHC) class II allele HLA-DOB∗01:01 in OMAS patients. OMAS severity scores were associated with the expression of several candidate autoimmune genes. We propose a model in which polyclonal auto-reactive B lymphocytes act as antigen-presenting cells and drive TLS formation, thereby supporting both sustained polyclonal T cell-mediated anti-tumor immunity and paraneoplastic OMAS neuropathology.


Asunto(s)
Neuroblastoma , Síndrome de Opsoclonía-Mioclonía , Niño , Humanos , Autoinmunidad , Neuroblastoma/complicaciones , Neuroblastoma/metabolismo , Síndrome de Opsoclonía-Mioclonía/complicaciones , Síndrome de Opsoclonía-Mioclonía/patología , Autoanticuerpos , Genes MHC Clase II , Ataxia
2.
Nat Commun ; 13(1): 7184, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418294

RESUMEN

mRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the 5' to 3' exonuclease Xrn1. Here we show that nucleocytoplasmic shuttling of several yeast mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1, location of one of which is conserved from yeast to human. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Preventing Xrn1 import, either by deleting KAP120 or mutating the two Xrn1 NLSs, compromises transcription and, unexpectedly, also cytoplasmic decay, uncovering a cytoplasmic decay pathway that initiates in the nucleus. Most mRNAs are degraded by both pathways - the ratio between them represents a full spectrum. Importantly, Xrn1 shuttling is required for proper responses to environmental changes, e.g., fluctuating temperatures, involving proper changes in mRNA abundance and in cell proliferation rate.


Asunto(s)
ARN , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN/metabolismo , Estabilidad del ARN , Transcripción Genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Elife ; 82019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30896406

RESUMEN

Small open reading frames (smORFs) encoding 'micropeptides' exhibit remarkable evolutionary complexity. Conserved peptides encoded by mille-pattes (mlpt)/polished rice (pri)/tarsal less (tal) are essential for embryo segmentation in Tribolium but, in Drosophila, function in terminal epidermal differentiation and patterning of adult legs. Here, we show that a molecular complex identified in Drosophila epidermal differentiation, comprising Mlpt peptides, ubiquitin-ligase Ubr3 and transcription factor Shavenbaby (Svb), represents an ancient developmental module required for early insect embryo patterning. We find that loss of segmentation function for this module in flies evolved concomitantly with restriction of Svb expression in early Drosophila embryos. Consistent with this observation, artificially restoring early Svb expression in flies causes segmentation defects that depend on mlpt function, demonstrating enduring potency of an ancestral developmental switch despite evolving embryonic patterning modes. These results highlight the evolutionary plasticity of conserved molecular complexes under the constraints of essential genetic networks. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Tipificación del Cuerpo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Epidermis/embriología , Regulación del Desarrollo de la Expresión Génica , Organogénesis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales
4.
Elife ; 3: e01440, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24599282

RESUMEN

Embryonic anterior-posterior patterning is well understood in Drosophila, which uses 'long germ' embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use 'short germ' embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Insectos/genética , Avispas/genética , Animales , Tipificación del Cuerpo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Evolución Molecular , Proteínas de Insectos/metabolismo , Filogenia , Avispas/embriología , Avispas/metabolismo
6.
Biochim Biophys Acta ; 1789(4): 333-42, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18976722

RESUMEN

In spite of their varied appearances, insects share a common body plan whose layout is established by patterning genes during embryogenesis. We understand in great molecular detail how the Drosophila embryo patterns its segments. However, Drosophila has a type of embryogenesis that is highly derived and varies extensively as compared to most insects. Therefore, the study of other insects is invaluable for piecing together how the ancestor of all insects established its segmented body plan, and how this process can be plastic during evolution. In this review, we discuss the evolution of Antero-Posterior (A-P) patterning mechanisms in insects. We first describe two distinct modes of insect development - long and short germ development - and how these two modes of patterning are achieved. We then summarize how A-P patterning occurs in the long-germ Drosophila, where most of our knowledge comes from, and in the well-studied short-germ insect, Tribolium. Finally, using examples from other insects, we highlight differences in patterns of expression, which suggest foci of evolutionary change.


Asunto(s)
Tipificación del Cuerpo/fisiología , Drosophila/embriología , Evolución Molecular , Animales , Drosophila/citología
7.
Dev Cell ; 14(4): 455-6, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18410718

RESUMEN

A paper by Nunes da Fonseca and colleagues in this issue of Developmental Cell shows that, to pattern its dorsoventral axis, the beetle Tribolium utilizes many of the same genes used in flies, but in very different ways: rather than relying on maternal information, it uses Dorsal and Dpp as part of two coordinated ancestral self-organized systems.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Morfogénesis , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Tribolium/embriología
8.
J Cell Biol ; 175(1): 77-85, 2006 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-17030984

RESUMEN

Terminal differentiation of distinct cell types requires the transcriptional activation of differentiation-specific genes and the suppression of genes associated with the precursor cell. For example, the expression of utrophin (Utrn) is suppressed during skeletal muscle differentiation, and it is replaced at the sarcolemma by the related dystrophin protein. The MyoD transcription factor directly activates the expression of a large number of skeletal muscle genes, but also suppresses the expression of many genes. To characterize a mechanism of MyoD-mediated suppression of gene expression, we investigated two genes that are suppressed in fibroblasts converted to skeletal muscle by MyoD, follistatin-like 1 (Fstl1) and Utrn. MyoD directly activates the expression of a muscle-specific microRNA (miRNA), miR-206, which targets sequences in the Fstl1 and Utrn RNA, and these sequences are sufficient to suppress gene expression in the presence of miR-206. These findings demonstrate that MyoD, in addition to activating muscle-specific genes, induces miRNAs that repress gene expression during skeletal muscle differentiation.


Asunto(s)
Proteínas Relacionadas con la Folistatina/genética , Regulación de la Expresión Génica , MicroARNs/genética , Proteína MioD/fisiología , Utrofina/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , Proteínas Relacionadas con la Folistatina/metabolismo , Ratones , MicroARNs/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Utrofina/metabolismo
9.
Cell ; 109(4): 447-58, 2002 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-12086602

RESUMEN

Yeast SIR2 is a NAD+-dependent histone deacetylase required for heterochromatic silencing at telomeres, rDNA, and mating-type loci. We find that the Drosophila homolog of Sir2 (dSir2) also encodes deacetylase activity and is required for heterochromatic silencing, but unlike ySir2, is not required for silencing at telomeres. We show that dSir2 interacts genetically and physically with members of the Hairy/Deadpan/E(Spl) family of bHLH euchromatic repressors, key regulators of Drosophila development. dSir2 is an essential gene whose loss of function results in both segmentation defects and skewed sex ratios, associated with reduced activities of the Hairy and Deadpan bHLH repressors. These results indicate that Sir2 in higher organisms plays an essential role in both euchromatic repression and heterochromatic silencing.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/anomalías , Silenciador del Gen/fisiología , Histona Desacetilasas/genética , Proteínas de Insectos/genética , Proteínas Represoras/genética , Procesos de Determinación del Sexo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae , Transactivadores/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Eucromatina/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Secuencias Hélice-Asa-Hélice/genética , Heterocromatina/genética , Histona Desacetilasas/metabolismo , Proteínas de Insectos/metabolismo , Masculino , Mutación/genética , NAD/genética , NAD/metabolismo , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Proteínas Represoras/metabolismo , Factores Sexuales , Sirtuina 2 , Sirtuinas , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA