RESUMEN
Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets.
Asunto(s)
Helmintos , Parásitos , Plasmodium , Humanos , Animales , Perú/epidemiología , Prevalencia , Zoonosis/epidemiología , Animales Salvajes/microbiología , Haplorrinos , SaguinusRESUMEN
Species of the genus Dipetalonema are parasitic nematodes of the family Onchocercidae (Nematoda; Filarioidea) which infect the peritoneal cavity of Neotropical primates. Of these, six species have been taxonomically described, two of these have been reported infecting the black-faced spider monkey (Ateles chamek): Dipetalonema gracile and Dipetalonema yatesi. Description of Dipetalonema species have been based on morphological characteristics, and their phylogenetic relationships remain unresolved. A few molecular studies have been carried out in Dipetalonema spp. infecting Neotropical primates. Seven filarioid nematodes (6 females and one male) recovered from one A. chamek in the Peruvian Amazon rainforest were morphologically identified as D. yatesi and molecularly characterized. A multi-locus genetic analysis of nuclear ribosomal region (18S) and mitochondrial (cox1, 12S, and nad5) gene sequences supported D. yatesi as a distinct lineage and yielded a highly resolved phylogenetic lineage tree for this filarioid genus of Neotropical primates. Our results highlighted that Dipetalonema species are divided in two well-supported clades, one containing D. yatesi and D. caudispina, and the second containing D. robini, D. gracile, and D. graciliformis. Due to sequence ambiguities from GenBank entries, relationships among isolates of D. gracile and D. graciliformis cannot be fully resolved, which requires further investigation. However, this suggests that these could represent a species complex. Our study confirms that D. yatesi is a valid species and constitutes the first molecular phylogenetic analysis of this parasite in black-faced spider monkeys.
RESUMEN
The rehabilitation and release of nonhuman primates after confiscation, surrender, or abandonment during illegal wildlife trafficking has implications for conservation, animal welfare, and public health. Risks associated with primate release include ecosystem disruption, inability of released primates to engage in normal foraging and social behaviors, and pathogen spillover. The International Union for the Conservation of Nature (IUCN) has several guidelines for the rehabilitation and release of trafficked primates intended to minimize such risks, though little is known about the use of these guidelines during primate confiscation, rehabilitation, and release or about the challenges faced by those who attempt to implement such guidelines in specific contexts. As one of the leading sources of Neotropical primate trade in the world, Peru has a primate population particularly vulnerable to the negative consequences of trafficked primate release. This study used semi-structured interviews and structured questionnaires of 19 people involved in primate confiscation, rehabilitation, and/or release in Peru and found that awareness and implementation of the IUCN guidelines are minimal. Opportunities to increase guideline implementation in Peru include expanding government involvement and support, adapting guidelines to specific contexts and locations, and establishing a platform for increased communication, cooperation, and research amongst those performing this work.
RESUMEN
Disease surveillance in Neotropical primates (NP) is limited by the difficulties associated with anesthetizing NP for sample collection in remote settings. Our objective was to optimize a noninvasive method of oral sampling from semicaptive NP in Peru. We offered 40 NP at Taricaya Rescue Centre in Madre de Dios, Peru ropes coated in various attractants and measured variables (acceptance of the rope, chewing time, and volume of fluid eluted from ropes) that may affect sample acquisition and quality. We preserved samples by direct freezing in liquid nitrogen or by storing samples in RNA stabilization reagent at room temperature. Sample integrity was measured by testing for mammalian cytochrome b with the use of conventional PCR. The NP successfully chewed on a rope in 82% (125/152) of trials. Overall sample integrity was high, with 96% (44/46) of samples (both directly frozen and stored in stabilization reagent) testing positive for cytochrome b. The number of times that an individual NP was exposed to the rope procedure and NP age were associated with higher acceptance rates and the NP successfully chewing on the rope. We conclude that ropes serve as a feasible noninvasive method of obtaining oral samples from NP at rescue centers and could be used in future studies to evaluate population genetics and for pathogen surveillance for population health monitoring.
Asunto(s)
Haplorrinos , Saliva , Manejo de Especímenes/veterinaria , Envejecimiento , Animales , Conducta Animal , Femenino , Masculino , BocaRESUMEN
The Mycobacterium tuberculosis complex causes tuberculosis in humans and nonhuman primates and is a global public health concern. Standard diagnostics rely upon host immune responses to detect infection in nonhuman primates and lack sensitivity and specificity across the spectrum of mycobacterial infection in these species. We have previously shown that the Oral Swab PCR (OSP) assay, a direct pathogen detection method, can identify the presence of M. tuberculosis complex in laboratory and free-ranging Old World monkeys. Addressing the current limitations in tuberculosis diagnostics in primates, including sample acquisition and pathogen detection, this paper furthers our understanding of the presence of the tuberculosis-causing bacteria among New World monkeys in close contact with humans. Here we use the minimally invasive OSP assay, which includes buccal swab collection followed by amplification of the IS6110 repetitive nucleic acid sequence specific to M. tuberculosis complex subspecies, to detect the bacteria in the mouths of Peruvian New World monkeys. A total of 220 buccal swabs from 16 species were obtained and positive amplification of the IS6110 sequence was observed in 30 (13.6%) of the samples. To our knowledge, this is the first documentation of M. tuberculosis complex DNA in a diverse sample of Peruvian Neotropical primates.
Asunto(s)
Técnicas Bacteriológicas/métodos , Tuberculosis/diagnóstico , Tuberculosis/veterinaria , Factores de Edad , Animales , ADN Bacteriano , ADN Mitocondrial , Femenino , Masculino , Enfermedades de los Monos , Mycobacterium/genética , Perú , Platirrinos/microbiología , Reacción en Cadena de la Polimerasa , Tuberculosis/epidemiologíaRESUMEN
BACKGROUND: Campylobacter jejuni and Campylobacter coli are food-borne pathogens of great importance and feature prominently in the etiology of developing world enteritis and travellers' diarrhoea. Increasing antimicrobial resistant Campylobacter prevalence has been described globally, yet data from Peru is limited. Our objective was to describe the prevalence trends of fluoroquinolone and macrolide-resistant C. jejuni and C. coli stool isolates from three regions in Peru over a ten-year period. METHODS: Surveillance for enteric pathogens was conducted in Lima, Iquitos and Cusco between 2001 and 2010. Campylobacter stool isolates were tested for susceptibilities to ciprofloxacin, azithromycin and erythromycin. Susceptibilities were reviewed for 4652 isolates from Lima ( n = 3419), Iquitos ( n = 625) and Cusco ( n = 608). RESULTS: Comparing the study periods of 2001-2005 and 2006-2010, prevalence of ciprofloxacin-resistant C. jejuni isolates rose in the study areas of Lima (73.1% to 89.8%, p < 0.001) and Iquitos (24.1% to 48.9%, p < 0.001). Ciprofloxacin-resistant C. coli rates also increased in Lima (48.1% to 87.4%, p < 0.001) and Cusco (10.0% to 65.9%, p = 0.005). Small but significant increases in azithromycin-resistant and erythromycin-resistant C. jejuni prevalence were noted in Iquitos (2.2% to 14.9%, p < 0.001; 3.2% to 14.9%, p = 0.002), and erythromycin-resistant C. coli rates increased in Lima (0.0% to 5.3%, p = 0.038). The prevalence of C. jejuni isolates resistant to both ciprofloxacin and azithromycin increased in Iquitos (0.3% to 14.9%, p < 0.001) and Lima (0.3% to 1.6%, p = 0.011), and prevalence of C. jejuni isolates resistant to both ciprofloxacin and erythromycin rose in Iquitos (0.0% to 14.9%, p < 0.001). Ciprofloxacin and erythromycin resistant C. coli prevalence increased in Lima (0.0% to 5.3%, p = 0.034). CONCLUSIONS: These results have implications for the empirical management of enterocolitis in Peru. Ongoing surveillance is essential to guide appropriate antimicrobial use in this setting. Local epidemiological studies to explore the relationship between increasing antimicrobial resistance and agricultural or human antibiotic use may be valuable.