Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 52(5): 972-983, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37391883

RESUMEN

Efforts to mitigate the nitrogen (N) footprint of maize production include using N-fixing microbes (NFM) and/or microbial inhibitors. We quantified the effects of NFM, the nitrification inhibitor (NI) 2-(N-3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture, and the urease inhibitor (UI) N-(n-butyl) thiophosphoric triamide, each applied by itself or paired with another additive, on nitrous oxide (N2 O) emissions, nitrate (NO3 - ) leaching, and crop performance in contrasting irrigated and rainfed maize systems over two growing seasons. We also used published emission factors to estimate indirect N2 O emissions from leached NO3 - that can be converted to N2 O. Agronomic effects were relatively small; the NI + NFM treatment increased N use efficiency and grain yield and protein content in some cases by 11%-14% relative to a treatment receiving only urea. Most of the additive treatments reduced direct (in-field) N2 O emissions, most consistently for treatments that contained NI which reduced emissions by 24%-77%. However, these beneficial effects were counteracted by increased NO3 - leaching, which occurred most consistently with UI or NFM applied as single additives or with NI. In these treatments, NO3 - leaching increased during at least one growing season, and at both sites, by factors of 2-7. In three site-years, increased NO3 - leaching with NFM and NI + NFM offset large reductions in direct N2 O, such that total direct + indirect N2 O emissions were not different from that in the urea only treatment. These unintended effects may have resulted from unfavorable rainfall timing, varying crop N demand, and declining additive effectiveness. Use of these soil additives requires caution and further study.


Asunto(s)
Nitrógeno , Zea mays , Nitrógeno/análisis , Fertilizantes/análisis , Suelo , Agricultura/métodos , Óxido Nitroso/análisis , Urea
2.
Environ Pollut ; 284: 117124, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915396

RESUMEN

Potato (Solanum tuberosum L.) production in irrigated coarse-textured soils requires intensive nitrogen (N) fertilization which may increase reactive N losses. Biological soil additives including N-fixing microbes (NFM) have been promoted as a means to increase crop N use efficiency, though few field studies have evaluated their effects, and none have examined the combined use of NFM with microbial inhibitors. A 2-year study (2018-19) in an irrigated loamy sand quantified the effects of the urease inhibitor NBPT, the nitrification inhibitor DMPSA, NFM, and the additive combinations DMPSA + NBPT and DMPSA + NFM on potato performance and growing season nitrous oxide (N2O) emissions and nitrate (NO3-) leaching. All treatments, except a zero-N control, received diammonium phosphate at 45 kg N ha-1 and split applied urea at 280 kg N ha-1. Compared with urea alone, DMPSA + NBPT reduced NO3- leaching and N2O emissions by 25% and 62%, respectively, and increased crop N uptake by 19% in one year, although none of the additive treatments increased tuber yields. The DMPSA and DMPSA + NBPT treatments had greater soil ammonium concentration, and all DMPSA-containing treatments consistently reduced N2O emissions, compared to urea-only. Use of NBPT by itself reduced NO3- leaching by 21% across growing seasons and N2O emissions by 37% in 2018 relative to urea-only. In contrast to the inhibitors, NFM by itself increased N2O by 23% in 2019; however, co-applying DMPSA with NFM reduced N2O emissions by ≥ 50% compared to urea alone. These results demonstrate that DMPSA can mitigate N2O emissions in potato production systems and that DMPSA + NBPT can reduce both N2O and NO3- losses and increase the N supply for crop uptake. This is the first study to show that combining a nitrification inhibitor with NFM can result in decreased N2O emissions in contrast to unintended increases in N2O emissions that can occur when NFM is applied by itself.


Asunto(s)
Óxido Nitroso , Solanum tuberosum , Agricultura , Fertilizantes/análisis , Nitratos , Nitrógeno , Óxido Nitroso/análisis , Suelo , Urea
3.
J Environ Qual ; 49(2): 281-291, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33016433

RESUMEN

Nitrogen (N) loss from cropping systems has important environmental implications, including contamination of drinking water with nitrate. A 2-yr study evaluated the effects of six N rate, source, and timing treatments, including a variable rate (VR) N treatment based on the N sufficiency index approach using remote sensing, and two irrigation rate treatments, including conventional and reduced rate, on nitrate leaching, residual soil nitrate, and plant N uptake for potato (Solanum tuberosum L. cv. Russet Burbank) production in 2016 and 2017 on a Hubbard loamy sand. Nitrate leaching losses measured with suction-cup lysimeters varied between 2016 and 2017 with flow-weighted mean nitrate N concentrations of 5.6 and 12.8 mg N L-1 , respectively, and increased from 7.1 to 10.4 mg N L-1 as N rate increased from 45 to 270 kg N ha-1 . Despite reductions in N rate of 22 and 44 kg N ha-1 in 2016 and 2017, respectively, for the VR N treatment, there was no significant difference in nitrate leaching compared with the existing N best management practices (BMPs). Reducing irrigation rate by 15% decreased nitrate leaching load by 17% through a reduction in percolation. Residual soil nitrate N in the top 60 cm across all treatments (7.9 mg N kg-1 ) suggests a risk for nitrate leaching during the nongrowing season, and plant N uptake did not explain yearly variation in nitrate leaching and residual soil nitrate. Although existing N BMPs are effective at controlling N losses, development of alternative practices is needed to further reduce the risk of groundwater contamination.


Asunto(s)
Solanum tuberosum , Agricultura , Fertilizantes , Nitratos , Nitrógeno
4.
Foods ; 9(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197413

RESUMEN

Recently released potato cultivars Dakota Russet and Easton were bred for low reducing sugars, and low acrylamide-forming potential in French fries. The objectives of this study were to determine: (1) the effects of nitrogen rate and storage time on tuber glucose concentrations in different cultivars; (2) the relationships between acrylamide, glucose, and asparagine for the new cultivars and Russet Burbank. The study was conducted at Becker, Minnesota over a period of two years on a loamy sand soil under irrigated conditions. All cultivars were subjected to five N rates from 135 to 404 kg ha-1 in a randomized complete block design. Following harvest, tubers were stored at 7.8 °C and sampled at 0, 16, and 32 weeks. Dakota Russet and Easton had significantly lower concentrations of stem- and bud-end glucose, asparagine, and acrylamide than those of Russet Burbank in both years. The effect of storage time on glucose concentration was significant but differed with cultivar and year. N rate effects on stem- and bud-end glucose concentrations were cultivar and storage time dependent. After 16 weeks of storage, both asparagine and acrylamide concentrations linearly increased with increasing N rate. Glucose concentration was positively correlated with acrylamide concentration (r2 = 0.61). Asparagine concentration was also positively correlated with acrylamide concentration (r2 = 0.45) when the asparagine:glucose ratio was <1.306. The correlation between fry color and stem-end glucose concentration was significant over three cultivars in both years, but stronger in a growing season with minimal environmental stress. Taken together, these results suggest that while acrylamide formation during potato processing is a complex process affected by agronomic practices, environmental conditions during the growing season, and storage conditions, cultivar selection may be the most reliable method to minimize acrylamide in fried products.

5.
Data Brief ; 24: 103914, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31080851

RESUMEN

Three different woodchip forms were tested for bromide sorption including ground woodchip, unwashed woodchips, and washed woodchips. We used six varying initial bromide concentrations to conduct the bromide sorption experiments with each woodchip form. Data on the initial and equilibrium bromide concentrations, wood mass, and initial and equilibrium solution pH from each of the six experiments are presented. Seven bromide tracer tests were conducted on field-scale denitrification beds. In this paper, data from each of the tracer tests including variation of bromide concentration over time and hydraulic indices of the tracer tests are presented. Interpretation of the data can be found in the research article entitled "Efficacy of bromide tracers for evaluating the hydraulic performance of denitrification beds treating agricultural drainage water" [1].

6.
Front Microbiol ; 10: 635, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001220

RESUMEN

Woodchip bioreactor technology removes nitrate from agricultural subsurface drainage by using denitrifying microorganisms. Although woodchip bioreactors have demonstrated success in many field locations, low water temperature can significantly limit bioreactor efficiency and performance. To improve bioreactor performance, it is important to identify the microbes responsible for nitrate removal at low temperature conditions. Therefore, in this study, we identified and characterized denitrifiers active at low-temperature conditions by using culture-independent and -dependent approaches. By comparative 16S rRNA (gene) analysis and culture isolation technique, Pseudomonas spp., Polaromonas spp., and Cellulomonas spp. were identified as being important bacteria responsible for denitrification in woodchip bioreactor microcosms at relatively low temperature conditions (15°C). Genome analysis of Cellulomonas sp. strain WB94 confirmed the presence of nitrite reductase gene nirK. Transcription levels of this nirK were significantly higher in the denitrifying microcosms than in the non-denitrifying microcosms. Strain WB94 was also capable of degrading cellulose and other complex polysaccharides. Taken together, our results suggest that Cellulomonas sp. denitrifiers could degrade woodchips to provide carbon source and electron donors to themselves and other denitrifiers in woodchip bioreactors at low-temperature conditions. By inoculating these denitrifiers (i.e., bioaugmentation), it might be possible to increase the nitrate removal rate of woodchip bioreactors at low-temperature conditions.

7.
Microb Ecol ; 78(3): 753-763, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30852638

RESUMEN

Soil microbiota play important and diverse roles in agricultural crop nutrition and productivity. Yet, despite increasing efforts to characterize soil bacterial and fungal assemblages, it is challenging to disentangle the influences of sampling design on assessments of communities. Here, we sought to determine whether composite samples-often analyzed as a low cost and effort alternative to replicated individual samples-provide representative summary estimates of microbial communities. At three Minnesota agricultural research sites planted with an oat cover crop, we conducted amplicon sequencing for soil bacterial and fungal communities (16SV4 and ITS2) of replicated individual or homogenized composite soil samples. We compared soil microbiota from within and among plots and then among agricultural sites using both sampling strategies. Results indicated that single or multiple replicated individual samples, or a composite sample from each plot, were sufficient for distinguishing broad site-level macroecological differences among bacterial and fungal communities. Analysis of a single sample per plot captured only a small fraction of the distinct OTUs, diversity, and compositional variability detected in the analysis of multiple individual samples or a single composite sample. Likewise, composite samples captured only a fraction of the diversity represented by the six individual samples from which they were formed, and, on average, analysis of two or three individual samples offered greater compositional coverage (i.e., greater number of OTUs) than a single composite sample. We conclude that sampling design significantly impacts estimates of bacterial and fungal communities even in homogeneously managed agricultural soils, and our findings indicate that while either strategy may be sufficient for broad macroecological investigations, composites may be a poor substitute for replicated samples at finer spatial scales.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Microbiota , Microbiología del Suelo , Agricultura , Bacterias/clasificación , Bacterias/genética , Hongos/clasificación , Hongos/genética , Minnesota , Filogenia , Suelo/química
8.
PLoS One ; 11(12): e0167834, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27930684

RESUMEN

Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.


Asunto(s)
Agricultura , Lluvia , Contaminantes del Agua/química , Fertilizantes , Estiércol , Minnesota
9.
J Environ Qual ; 40(4): 1103-12, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21712579

RESUMEN

Potato ( L.) is a N-intensive crop, with high potential for nitrate (NO) leaching, which can contribute to both water contamination and indirect nitrous oxide (NO) emissions. Two approaches that have been considered for reducing N losses include conventional split application (CSA) of soluble fertilizers and single application of polymer-coated urea (PCU). The objectives of this study were to: (i) compare NO leaching using CSA and two PCUs (PCU-1 and PCU-2), which differed in their polymer formulations, and (ii) use measured NO leaching rates and published emissions factors to estimate indirect NO emissions. Averaged over three growing seasons (2007-2009), NO leaching rates were not significantly different among the three fertilizer treatments. Using previously reported direct NO emissions data from the same experiment, total direct plus indirect growing season NO emissions with PCU-1 were estimated to be 30 to 40% less than with CSA. However, PCU-1 also resulted in greater residual soil N after harvest in 2007 and greater soil-water NO in the spring following the 2008 growing season. These results provide evidence that single PCU applications for irrigated potato production do not increase growing season NO leaching compared with multiple split applications of soluble fertilizers, but have the potential to increase N losses after the growing season and into the following year. Estimates of indirect NO emissions ranged from 0.8 to 64% of direct emissions, depending on what value was assumed for the emission factor describing off-site conversion of NO to NO. Thus, our results also demonstrate how more robust models are needed to account for off-site conversion of NO to NO, since current emission factor models have an enormous degree of uncertainty.


Asunto(s)
Agricultura/métodos , Monitoreo del Ambiente/métodos , Nitratos/análisis , Óxido Nitroso/análisis , Solanum tuberosum/crecimiento & desarrollo , Clima , Fertilizantes/análisis , Minnesota , Polímeros/química , Suelo/análisis , Urea/química , Contaminantes Químicos del Agua/análisis
10.
J Environ Qual ; 39(2): 492-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20176822

RESUMEN

Increasing groundwater nitrate concentrations in potato (Solanum tuberosum L.) production regions have prompted the need to identify alternative nitrogen management practices. A new type of polymer-coated urea (PCU) called Environmentally Smart Nitrogen (Agrium, Inc., Calgary, AB) is significantly lower in cost than comparable PCUs, but its potential to reduce nitrate leaching and improve fertilizer recovery has not been extensively studied in potato. In 2006 and 2007, four rates of PCU applied at emergence were compared with equivalent rates of soluble N split-applied at emergence and post-hilling. Additional treatments included a 0 N control, two PCU timing treatments (applied at preplant or planting), and a soluble N fertigation simulation. Nitrate leaching, fertilizer N recovery, N use efficiency (NUE), and residual soil inorganic N were measured. Both 2006 and 2007 were low leaching years. Nitrate leaching with PCU (21.3 kg NO(3)-N ha(-1) averaged over N rates) was significantly lower than with split-applied soluble N (26.9 kg NO(3)-N ha(-1)). The soluble N fertigation treatment resulted in similar leaching as PCU at equivalent N rates. Apparent fertilizer N recovery with PCU (65% averaged over four rates) tended to be higher than split-applied soluble N (55%) at equivalent rates (p = 0.059). Residual soil N and NUE were not significantly affected by N source. Under the conditions of this study, PCU significantly reduced leaching and tended to improved N recovery over soluble N applied in two applications and resulted in similar N recovery and nitrate leaching as soluble N applied in six applications.


Asunto(s)
Fertilizantes , Nitrógeno/metabolismo , Solanum tuberosum/metabolismo , Urea/administración & dosificación , Agricultura , Nitratos/análisis , Polímeros , Suelo/análisis , Solanum tuberosum/crecimiento & desarrollo , Agua/análisis , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología)
11.
J Environ Qual ; 39(1): 282-92, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20048316

RESUMEN

Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.


Asunto(s)
Fertilizantes/análisis , Fósforo/química , Poa/fisiología , Movimientos del Agua , Contaminantes Químicos del Agua/química , Agricultura , Monitoreo del Ambiente , Factores de Tiempo
12.
J Environ Qual ; 38(1): 329-36, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19141823

RESUMEN

Water quality concerns, including greater potential for nutrient transport to surface waters resulting in eutrophication and nutrient leaching to ground water, exist when agricultural or food processing industry wastes and by-products are land applied. Plot- and field-scale studies were conducted to evaluate the effects of sugar beet by-products on NO3-N and P losses and biochemical oxygen demand (BOD) in runoff and NO3-N concentrations in percolating waters. In the runoff plot study, treatments in the first year included two rates (224 and 448 Mg ha(-1) fresh weight) of pulp and spoiled beets and a nonfertilized control. In the second year, no by-products were applied on the treated plots, the control treatment was fertilized with N fertilizer, and an additional treatment was added as a nonfertilized control in buffer areas. Wheat (Triticum aestivum L.) was grown in the year of by-product application and sugar beet (Beta vulgaris L.) in the following year. In the percolation field study, the treatments were the control, pulp (224 Mg ha(-)(1)), and spoiled beets (224 Mg ha(-1)). Results from the runoff plot showed that both by-products caused immobilization of soil inorganic N and thus reduced NO3-N losses in runoff and soil waters during the first growing season. There was some risk of NO3-N exceeding the drinking water limit of 10 mg L(-1), especially between the period of wheat harvest and soil freezing in fall when pulp was applied at 448 Mg ha(-1). The field-scale study showed that by-product application at 224 Mg ha(-1) did not result in increased ground water NO3-N concentrations. Application of spoiled beets at both rates caused significantly higher BODs in runoff in the first year of application. The concentrations of total and soluble reactive P (SRP) were also higher from both rates of spoiled beet application and from the higher application rate of pulp during the 2-yr study period. These high BODs and total P and SRP concentrations in runoff waters from land application of sugar beet by-product suggest that application rates should not be higher than 224 Mg ha(-1). Best management practices that prevent runoff from entering surface waters directly from these fields are warranted.


Asunto(s)
Beta vulgaris , Residuos de Alimentos , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/análisis , Agua/análisis , Fertilizantes/análisis , Nitratos/análisis , Nitrógeno/análisis , Fósforo/análisis , Agua/normas
13.
J Environ Qual ; 38(1): 319-28, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19141822

RESUMEN

Land application of food processing wastes has become an acceptable practice because of the nutrient value of the wastes and potential cost savings in their disposal. Spoiled beets and pulp are among the main by-products generated by the sugar beet (Beta vulgaris L.) processing industry. Farmers commonly land apply these by-products at rates >224 Mg ha(-1) on a fresh weight basis. However, information on nutrient release in soils treated with these by-products and their subsequent impacts on crop yield is lacking. Field studies were conducted to determine the effects of sugar beet by-product application on N release and crop yields over two growing seasons. Treatments in the first year were two rates (224 and 448 Mg ha(-1) fresh weight) of pulp and spoiled beets and a nonfertilized control. In the second year after by-product application, the control treatment was fertilized with N fertilizer and an additional treatment was added as a nonfertilized control in buffer areas. Wheat (Triticum aestivum L.) was grown in the year of by-product application and sugar beet in the subsequent year. By-product treatments caused a significant reduction in wheat grain yield compared with the control. This was due to a decline in N availability as a result of immobilization. Based on microplots receiving 15N labeled beets, wheat took up <1% of spoiled beet-N (approximately 4.7 kg ha(-1)) during the year of by-product application. In the second cropping year, sugar beet root yields were significantly higher in the fertilized control and by-product treatments than the nonfertilized control. The lack of significant difference in sugar beet yield between the fertilized control and by-product treatments was likely due to the greater availability of N in the second year. Labeled 15N data also showed that the sugar beet crop recovered a 17% of sugar beet-N, an equivalent of 86 kg N ha(-1), during the second cropping year. There was no difference in sugar beet root yield, N uptake, or soil N mineralization during the sugar beet cropping season between the pulp and the spoiled beet treatments at comparable rates of application.


Asunto(s)
Beta vulgaris , Residuos de Alimentos , Nitrógeno/análisis , Suelo/análisis , Triticum/crecimiento & desarrollo , Biomasa , Metabolismo de los Hidratos de Carbono , Industria de Alimentos , Nitrógeno/metabolismo , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Triticum/metabolismo
14.
J Environ Qual ; 35(1): 207-15, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16391292

RESUMEN

Phosphorus-immobilizing amendments can be useful in minimizing P leaching from high P soils that may be irrigated with wastewater. This study tested the P-binding ability of various amendment materials in a laboratory incubation experiment and then tested the best amendment in a field setup using drainage lysimeters. The laboratory experiment involved incubating 100-g samples of soil (72 mg kg(-1) water-extractable phosphorus, WEP) with various amendments at different rates for 63 d at field moisture capacity and 25 degrees C. The amendments tested were alum [Al2SO4)3.14H2O], ferric chloride (FeCl3), calcium carbonate (CaCO3), water treatment residual (WTR), and sugarbeet lime (SBL). Ferric chloride and alum at rates of 1.5 and 3.9 g kg(-1), respectively, were the most effective amendments that decreased WEP to 20 mg kg(-1), below which leaching has previously been shown to be low. Alum (1.3 kg m(-2)), which is less sensitive to redox conditions, was subsequently tested under field conditions, where it reduced WEP concentration in the 0- to 0.15-m layer from 119 mg kg(-1) on Day 0 to 36.1 mg kg(-1) (85% decrease) on Day 41. Lysimeter breakthrough tests using tertiary-treated potato-processing wastewater (mean total phosphorus [TP] = 3.4 mg L(-1)) showed that alum application reduced leachate TP and soluble reactive phosphorus (SRP) concentrations by 27 and 25%, respectively. These results indicate that alum application may be an effective strategy to immobilize P in high P coarse-textured soils. The relatively smaller decreases in TP and SRP in the leachate compared to WEP suggest some of the P may be coming from depths below 0.2 m. Thus, to achieve higher P sequestration, deeper incorporation of the alum may be necessary.


Asunto(s)
Residuos Industriales , Fósforo/aislamiento & purificación , Suelo , Agua , Conductividad Eléctrica , Concentración de Iones de Hidrógeno
15.
J Environ Qual ; 35(1): 324-33, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16397108

RESUMEN

Land application of wastewater has become an important disposal option for food-processing plants operating year-round. However, there are concerns about nutrient leaching from winter wastewater application on frozen soils. In this study, P and N leaching were compared between nongrowing season application of tertiary-treated wastewater plus growing season application of partially treated wastewater (NGS) vs. growing season application of partially treated wastewater (GS) containing high levels of soil P. As required by the Minnesota Pollution Control Agency (MPCA), the wastewater applied to the NGS fields during October through March was treated such that it contained < or =6 mg L(-1) total phosphorus (TP), < or =10 mg L(-1) NO3-N, and < or =20 mg L(-1) total Kjeldahl nitrogen (TKN). The only regulation for wastewater application during the growing season (April through September) was that cumulatively it did not exceed the agronomic N requirements of the crop in any sprayfield. Application of tertiary-treated wastewater during the nongrowing season plus partially treated wastewater during the growing season did not significantly increase NO3-N leaching compared with growing season application of nonregulated wastewater. However, median TP concentration in leachate was significantly higher from the NGS (3.56 mg L(-1)) than from the GS sprayfields (0.52 mg L(-1)) or nonirrigated sites (0.52 mg L(-1)). Median TP leaching loss was also significantly higher from the NGS sprayfields (57 kg ha(-1)) than from the GS (7.4 kg ha(-1)) or control sites (6.9 kg ha(-1)). This was mainly due to higher hydraulic loading from winter wastewater application and limited or no crop P uptake during winter. Results from this study indicate that winter application of even low P potato-processing wastewater to high P soils can accelerate P leaching. We conclude that the regulation of winter wastewater application on frozen soils should be based on wastewater P concentration and permissible loading. We also recommend that winter irrigation should take soil P saturation into consideration.


Asunto(s)
Congelación , Residuos Industriales , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Estaciones del Año , Agua , Aguas del Alcantarillado , Suelo/análisis
16.
J Environ Qual ; 34(4): 1277-85, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15998849

RESUMEN

Land application of wastewater presents potential for ground water pollution if not properly managed. In situ breakthrough tests were conducted using potato (Solanum tuberosum L.)-processing wastewater and a Br tracer to characterize P leaching in seasonally frozen sandy outwash soils. In the first test, P and Br breakthrough were measured in a 7-m deep well following wastewater [2.94 mg L(-1) total P (TP); 280 mg L(-1) Br] application at the site that had 13.1 mg water-extractable P (WEP) kg(-1)and 94.4 mg Bray-1 P kg(-1). Bromide was detected in the well after approximately 0.4 pore volumes, but there was no P break-through after 7 pore volumes. In the second breakthrough test, wastewater containing 3.6 mg L(-1) TP and 259 mg L(-1) Br was applied on 1.5-m deep lysimeters at low (0.8 mg WEP kg(-1); 12.1 mg Bray-1 P kg(-1)) and high soil test P sites (104 mg WEP kg(-1); 585 mg Bray-1 P kg(-1)). Leachate TP concentration during the test remained constant (0.04 mg L(-1)) at the low P sites but increased from approximately 3.5 to 5.6 mg L(-1) at the high P sites. These results indicate no P leaching in low P soils, but leaching in high P soils, thus suggesting that most of the P leached at the high P sites was mainly due to desorption and dissolution of weakly adsorbed P from prior P applications. This was consistent with P transport simulations using the convective-dispersive equation. We conclude that P concentration in land-applied wastewater should be regulated based on soil test-P level plus wastewater P loading.


Asunto(s)
Solanum tuberosum , Eliminación de Residuos Líquidos/métodos , Contaminantes del Agua/análisis , Adsorción , Bromo/análisis , Fósforo/análisis , Estaciones del Año , Dióxido de Silicio , Movimientos del Agua
17.
J Environ Qual ; 33(3): 1055-61, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15224944

RESUMEN

Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.


Asunto(s)
Populus/crecimiento & desarrollo , Eliminación de Residuos/métodos , Contaminantes del Suelo/análisis , Suelo , Árboles , Biomasa , Conservación de los Recursos Naturales , Fertilizantes , Incineración , Residuos Industriales
18.
J Environ Qual ; 33(1): 173-80, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14964372

RESUMEN

Lumber used to construct raised garden beds is often treated with chromated copper arsenate (CCA). This project aimed to determine (i) how far As, Cu, and Cr had diffused away from CCA-treated wood surfaces in raised garden beds under realistic conditions, (ii) the uptake of these elements by crops, and (iii) the effect of CCA solution on soil bacteria. This study showed that As, Cu, and Cr diffuse into soil from CCA-treated wood used to construct raised garden beds. To determine crop uptake of these elements, contaminated soil 0 to 2 cm from the treated wood was obtained from two different beds (40-50 mg kg(-1) As); control soil was collected 1.5 m away from the treated wood (<3-10 mg kg(-1) As). Four replicates of carrot (Daucus carota var. sativus Hoffm. cv. Thumbelina), spinach (Spinacia oleracea L. cv. Indian Summer), bush bean (Phaseolus vulgaris L. cv. Provider), and buckwheat (Fagopyrum esculentum Moench cv. Common) were grown in pots containing these soils in a greenhouse. After harvest, plant materials were dried, ground, digested, and analyzed for As by inductively coupled plasma-hydride generation (ICP-HG). Concentrations of As in all crops grown in contaminated soils were higher than those from control soils. The levels of As in the crops remained well below the recommended limit for As set by the United States Public Health Service (2.6 mg kg(-1) fresh wt.). To determine if bacteria in soils 0 to 2 cm from the treated wood had higher resistance to Type C chromated copper arsenate (CCA-C) solution than those from reference soils, dilution plates were set up using quarter-strength tryptic soy agar (TSA) media and 0 to 22.94 g L(-1) (0-1.25% v/v) CCA-C working solution. The microorganisms from soils adjacent to treated wood had greater growth on the CCA-amended media than those from reference soils outside the bed.


Asunto(s)
Arseniatos/química , Arsénico/química , Contaminantes Ambientales , Madera , Monitoreo del Ambiente , Humanos
19.
J Environ Qual ; 32(2): 480-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12708671

RESUMEN

High N fertilizer and irrigation amounts applied to potato (Solanum tuberosum L.) on coarse-textured soils often result in nitrate (NO3) leaching and low recovery of applied fertilizer N. This 3-yr study compared the effects of two rates (140 and 280 kg N ha(-1)) of a single polyolefin-coated urea (PCU) application versus split applications of urea on 'Russet Burbank' potato yield and on NO3 leaching and N recovery efficiency (RE) on a loamy sand. Standard irrigation was applied in all years and excessive irrigation was used in another experiment in the third year. At the recommended rate of 280 kg N ha(-1), NO3 leaching during the growing season was 34 to 49% lower with PCU than three applications of urea. Under standard irrigation in the third year, leaching from five applications of urea (280 kg N ha(-1)) was 38% higher than PCU. Under leaching conditions in the first year (> or = 25 mm drainage water in at least one 24-h period) and excessive irrigation in the third year, PCU at 280 kg N ha(-1) improved total and marketable tuber yields by 12 to 19% compared with three applications of urea. Fertilizer N RE estimated by the difference and 15N isotope methods at the 280 kg N ha(-1) rate was, on average, higher with PCU (mean 50%) than urea (mean 43%). Fertilizer N RE values estimated by the isotope method (mean 51%) were greater than those estimated by the difference method (mean 47%). Results from this study indicate that PCU can reduce leaching and improve N recovery and tuber yield during seasons with high leaching.


Asunto(s)
Nitratos/análisis , Nitrógeno/análisis , Contaminantes del Suelo/análisis , Urea/química , Contaminantes del Agua/análisis , Fertilizantes , Polienos/química , Estaciones del Año , Solanum tuberosum , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA