Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 96(suppl 2): e20230704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016361

RESUMEN

This work investigated the annual variations in dry snow (DSRZ) and wet snow radar zones (WSRZ) in the north of the Antarctic Peninsula between 2015-2023. A specific code for snow zone detection on Sentinel-1 images was created on Google Earth Engine by combining the CryoSat-2 digital elevation model and air temperature data from ERA5. Regions with backscatter coefficients (σ°) values exceeding -6.5 dB were considered the extent of surface melt occurrence, and the dry snow line was considered to coincide with the -11 °C isotherm of the average annual air temperature. The annual variation in WSRZ exhibited moderate correlations with annual average air temperature, total precipitation, and the sum of annual degree-days. However, statistical tests indicated low determination coefficients and no significant trend values in DSRZ behavior with atmospheric variables. The results of reducing DSRZ area for 2019/2020 and 2020/2021 compared to 2018/2018 indicated the upward in dry zone line in this AP region. The methodology demonstrated its efficacy for both quantitative and qualitative analyses of data obtained in digital processing environments, allowing for the large-scale spatial and temporal variations monitoring and for the understanding changes in glacier mass loss.


Asunto(s)
Nube Computacional , Radar , Nieve , Regiones Antárticas , Estaciones del Año , Monitoreo del Ambiente/métodos , Temperatura
2.
An Acad Bras Cienc ; 95(suppl 3): e20211627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055509

RESUMEN

This study investigates the transient snowline (TSL) altitude for summer 2020, as well as glacial area loss in King George Island Icefields since 1988 using Sentinel-1 and 2 and Landsat Thematic Mapper (TM) imagery. Trends and anomalies in atmospheric temperature, U-wind, and V-wind were examined using ERA5 solutions. Results show the wet-snow zone corresponds to values of ≤ -13dB, and 44.3% of the glacial area is located above the TSL (≥ 300 m). Glacial area for 2020 is 999.95 km², and losses in the period represent 104.9 km² (error <1%) - a retreat of 3.17 km² / year. Glaciers in Keller Peninsula and Bellingshausen Dome lost the most area (28% and 17%, respectively) and did not have a TSL in 2020; followed by Warszawa (15%), Kraków (13%), and Eastern (10%), where the TSL was verified. Percentage area loss values increased with decreases in dimensions, area above TSL, and maximum elevation. Calving glaciers with ice-flow toward deeper and steeper submarine sectors (Bransfield Strait) exhibited greater glacier variations. The trend in warming atmospheric temperature was greater in the Bransfield Strait than in the Drake Passage. TSL and retreat difference between glaciers were influenced by climatic and ocean input, as well as multiple environmental factors.


Asunto(s)
Cubierta de Hielo , Viento , Regiones Antárticas , Estaciones del Año , Temperatura
3.
An Acad Bras Cienc ; 95(suppl 3): e20230624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126381

RESUMEN

This study aims to investigate the glacier shrinkage and recent proglacial environment in King George Bay, Antarctica, since 1988 in response to climate change. Remote sensing data (SPOT, Sentinel, Landsat and Planet Scope images) were applied to glacial landforms and ice-marginal fluctuations mapping. Annual mean near-surface air temperature reanalysis solutions from ERA-Interim were analyzed. Moraines and glaciofluvial landforms were identified. The Ana Northern Glacier has the highest retreat value (3.64 km) (and area loss of 31%) in response to higher depth in frontal ice-margin and reveal ocean-glacier linkages. The Ana South Glacier changed from a tidewater glacier to land-terminating after 1995, and had an outline minimum elevation variation of 89 meters, a shrinkage of 0.63 km, and a new proglacial subaerial sector. The Ana South Glacier foreland had recessional moraines (probably formed between 1995 and 2022), lagoons, and lakes. There are many flutings in low-relief environments. The 1980-1989, 1990-1999, 2000-2009, 2010-2019 anomaly plots concerning to the 1980-2019 average for atmospheric temperature, are shown to be a driver of the local glacial trends.

4.
An Acad Bras Cienc ; 94(suppl 1): e20210683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35544839

RESUMEN

Monitoring and inventorying proglacial lakes in the Maritime Antarctica region is essential for understanding the effects of climate change on these environments. This study uses Landsat images to create a map of lakes in ice-free areas of the South Shetlands Islands (SSI) for 1986/89, 2000/03 and 2020, and verification of patterns of change in lake areas and numbers. Normalized water difference index (NDWI) products, image segmentation, field records, and cartographic products from other studies were used to validate the results. Results show a 60% increase in the number of lakes from 1986/89 to 2000/03; and a 55% increase from 2000/03 to 2020. There was a 52% increase in lake areas from 1986/89 to 2000/03; a 79% increase from 2000/03 to 2020; and a 173% increase from 1986 to 2020. From 1986 to 2020, the most significant changes were a decrease in the average elevation and distance from glaciers and an increase in distance from the sea. In 2020, SSI lakes were predominantly coastal and ice-marginal, with an E and S orientations, flat surfaces, and a low declivity.


Asunto(s)
Cubierta de Hielo , Lagos , Regiones Antárticas , Cambio Climático , Monitoreo del Ambiente , Islas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA