Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Opin Genet Dev ; 88: 102256, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217658

RESUMEN

The genetic differences underlying unique phenotypes in humans compared to our closest primate relatives have long remained a mystery. Similarly, the genetic basis of adaptations between human groups during our expansion across the globe is poorly characterized. Uncovering the downstream phenotypic consequences of these genetic variants has been difficult, as a substantial portion lies in noncoding regions, such as cis-regulatory elements (CREs). Here, we review recent high-throughput approaches to measure the functions of CREs and the impact of variation within them. CRISPR screens can directly perturb CREs in the genome to understand downstream impacts on gene expression and phenotypes, while massively parallel reporter assays can decipher the regulatory impact of sequence variants. Machine learning has begun to be able to predict regulatory function from sequence alone, further scaling our ability to characterize genome function. Applying these tools across diverse phenotypes, model systems, and ancestries is beginning to revolutionize our understanding of noncoding variation underlying human evolution.


Asunto(s)
Evolución Molecular , Genoma Humano , Humanos , Variación Genética , Animales , Secuencias Reguladoras de Ácidos Nucleicos/genética , Fenotipo , Aprendizaje Automático
2.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37462278

RESUMEN

Tandem gene duplicates are important parts of eukaryotic genome structure, yet the phenotypic effects of new tandem duplications are not well-understood, in part owing to a lack of techniques to build and modify them. We introduce a method, Recombinase-Mediated Tandem Duplication, to engineer specific tandem duplications in vivo using CRISPR and recombinases. We describe construction of four different tandem duplications of the Alcohol Dehydrogenase (Adh) gene in Drosophila melanogaster, with duplicated block sizes ranging from 4.2 to 20.7 kb. Flies with the Adh duplications show elevated ADH enzyme activity over unduplicated single copies. This approach to engineering duplications is combinatoric, opening the door to systematic study of the relationship between the structure of tandem duplications and their effects on expression.


Asunto(s)
Drosophila melanogaster , Duplicación de Gen , Animales , Drosophila melanogaster/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma
3.
bioRxiv ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36711585

RESUMEN

Tandem gene duplicates are important parts of eukaryotic genome structure, yet the phenotypic effects of new tandem duplications are not well-understood, in part owing to a lack of techniques to build and modify them. We introduce a method, Recombinase-Mediated Tandem Duplication (RMTD), to engineer specific tandem duplications in vivo using CRISPR and recombinases. We describe construction of four different tandem duplications of the Alcohol Dehydrogenase ( Adh ) gene in Drosophila melanogaster , with duplicated block sizes ranging from 4.2 kb to 20.7 kb. Flies with the Adh duplications show elevated ADH enzyme activity over unduplicated single copies. This approach to engineering duplications is combinatoric, opening the door to systematic study of the relationship between the structure of tandem duplications and their effects on expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA