RESUMEN
BACKGROUND: Mononeuropathies (MNs: nerve ligation) and polyneuropathies (PNs: cisplatin) produce unilateral and bilateral tactile allodynia, respectively. We examined the effects of intraplantar (IPLT) and intrathecal (IT) botulinum toxin B (BoNT-B) on this allodynia. METHODS: Mice (male c57Bl/6) were prepared with an L5 nerve ligation. Others received cisplatin (IP 2.3 mg/kg/d, every other day for 6 injections). Saline and BoNT-B were administered through the IPLT or IT route. We examined mechanical allodynia (von Frey hairs) before and at intervals after BoNT. As a control, we injected IPLT BoNT-B treated with dithiothreitol to cleave heavy chain from light chain. We measured motor function using acute thermal escape and sensorimotor tests. RESULTS: MN and PN mice showed a persistent ipsilateral and bilateral allodynia, respectively. IPLT BoNT-B resulted in an ipsilateral dorsal horn reduction in the synaptic protein target of BoNT-B (vesicle-associated membrane protein) and a long-lasting (up to approximately 17 days) reversal of allodynia in PN and MN models. The predominant effect after IPLT delivery was ipsilateral to IPLT BoNT. The effects of IPLT BoNT-B in MN mice were blocked by prior reduction of BoNT-B with dithiothreitol. IT BoNT-B in mice with PN resulted in a bilateral reversal of allodynia. With these dosing parameters, hind paw placing and stepping reflexes were unaltered, and there were no changes in thermal escape latencies. After cisplatin, dorsal root ganglions displayed increases in activation transcription factor 3, which were reduced by IT, but not IPLT BoNT-B. CONCLUSIONS: BoNT-B given IPLT and IT yields a long-lasting attenuation of the allodynia in mice displaying MN and PN allodynia.