Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 5(40): 25919-25926, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33073118

RESUMEN

Membrane-based technologies, such as forward osmosis (FO), offer the advantage of treating water through a spontaneous process that requires minimal energy input while achieving favorable water permeability and selectivity. However, the FO process still has some challenges that need to be solved or improved to become entirely feasible. The main impediment for this technology is the recovery of the draw solute used to generate the osmotic potential in the process. In this paper, we discuss the use of a switchable polarity solvent, 1-cyclohexylpiperidine (CHP), as a draw solute that responds to external stimuli. Specifically, the miscibility of CHP can be switched by the presence of carbon dioxide (CO2) and is reversible by applying heat. Thus, in this study, the hydrophobic CHP is first converted to the hydrophilic ammonium salt (CHPH+), and its capability as a draw solution (DS) is thoroughly evaluated against the typical osmotic agent, sodium chloride (NaCl). Our results show that the water permeability across the thin film composite membrane increases by 69% when CHPH+ is used as the DS. Also, the water permeability when using different feed solutions: aqueous solutions of (a) urea and (b) NaCl were evaluated. In both cases, the CHPH+ generates water fluxes in the range of 65 ± 4 LMH and 69 ± 2 LMH, respectively. We then separate the diluted DS by applying 75 °C to the solution to recover the pure CHP and water. The results of this work provide a proof-of-concept of a CHP wastewater and desalination method via an FO process.

2.
J Phys Chem B ; 122(35): 8396-8403, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30137989

RESUMEN

The Synthetic Biological Membrane (SBM) project at NASA Ames developed a portable, self-repairing wastewater purification system. The self-repair process relies upon secreted fatty acids from a genetically engineered organism. However, solubilized fatty acids are difficult to detect using conventional methods. Surface-enhanced Raman scattering (SERS) was used to successfully detect solubilized fatty acids with the following limits of detection: 10-9, 10-8, 10-9, and 10-6 M for decanoic acid, myristic acid, palmitic acid, and stearic acid, respectively. Additionally, hollow core photonic crystal fiber (HCPCF) was applied as the sampling device together with SERS to develop in situ surveillance of the production of fatty acids. Using SERS + HCPCF yielded an 18-fold enhancement in SERS signal for the CH2 twist peak at 1295 cm-1 as compared to SERS alone. The results will help the SBM project to integrate a self-healing wastewater purification membrane into future water recycling systems.

3.
J Phys Chem A ; 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30125104

RESUMEN

The Synthetic Biological Membrane (SBM) project at NASA Ames developed a portable, self-repairing wastewater purification system. The self-repair process relies upon secreted fatty acids from a genetically engineered organism. However, solubilized fatty acids are difficult to detect using conventional methods. Surface-enhanced Raman scattering (SERS) was used to successfully detect solubilized fatty acids with the following limits of detection: 10-9 M, 10-8 M, 10-9 M, and 10-6 M for decanoic acid, myristic acid, palmitic acid, and stearic acid, respectively. Additionally, hollow core photonic crystal fiber (HCPCF) was applied as the sampling device together with SERS to develop in situ surveillance of the production of fatty acids. Using SERS + HCPCF yielded an 18 fold enhancement in SERS signal for the CH2 twist peak at 1295 cm-1 as compared to SERS alone. The results will help the SBM project to integrate a self-healing wastewater purification membrane into future water recycling systems.

4.
Biointerphases ; 11(2): 011009, 2016 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-26872580

RESUMEN

This study presents the morphological and chemical modification of the cell structure of aerosolized Escherichia coli treated with a dielectric barrier discharge (DBD). Exposure to DBD results in severe oxidation of the bacteria, leading to the formation of hydroxyl groups and carbonyl groups and a significant reduction in amine functionalities and phosphate groups. Near edge x-ray absorption fine structure (NEXAFS) measurements confirm the presence of additional oxide bonds upon DBD treatment, suggesting oxidation of the outer layer of the cell wall. Electron microscopy images show that the bacteria undergo physical distortion to varying degrees, resulting in deformation of the bacterial structure. The electromagnetic field around the DBD coil causes severe damage to the cell structure, possibly resulting in leakage of vital cellular materials. The oxidation and chemical modification of the bacterial components are evident from the Fourier transform infrared spectroscopy and NEXAFS results. The bacterial reculture experiments confirm inactivation of airborne E. coli upon treating with DBD.


Asunto(s)
Aerosoles , Escherichia coli/química , Escherichia coli/citología , Electricidad , Escherichia coli/fisiología , Viabilidad Microbiana , Microscopía Electrónica , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA