Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 9(22): 7444-7455, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34647546

RESUMEN

The development of protein and microorganism engineering have led to rising expectations of biotechnology in the design of emerging biomaterials, putatively of high interest to reduce our dependence on fossil carbon resources. In this way, cellulose, a renewable carbon based polysaccharide and derived products, displays unique properties used in many industrial applications. Although the functionalization of cellulose is common, it is however limited in terms of number and type of functions. In this work, a Carbohydrate-Binding Module (CBM) was used as a central core to provide a versatile strategy to bring a large diversity of functions to cellulose surfaces. CBM3a from Clostridium thermocellum, which has a high affinity for crystalline cellulose, was flanked through linkers with a streptavidin domain and an azide group introduced through a non-canonical amino acid. Each of these two extra domains was effectively produced and functionalized with a variety of biological and chemical molecules. Structural properties of the resulting tripartite chimeric protein were investigated using molecular modelling approaches, and its potential for the multi-functionalization of cellulose was confirmed experimentally. As a proof of concept, we show that cellulose can be labelled with a fluorescent version of the tripartite protein grafted to magnetic beads and captured using a magnet.


Asunto(s)
Clostridium thermocellum , Nanopartículas , Sitios de Unión , Celulosa , Polisacáridos
2.
PLoS Genet ; 17(6): e1009583, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34125833

RESUMEN

Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células HEK293 , Humanos , Mutación , Fosforilación , Transporte de Proteínas , Subunidades Ribosómicas Pequeñas/metabolismo , Transducción de Señal , Especificidad por Sustrato , Transcripción Genética
3.
Wiley Interdiscip Rev RNA ; 10(1): e1516, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30406965

RESUMEN

The synthesis of ribosomal subunits in eukaryotes requires the interplay of numerous maturation and assembly factors (AFs) that intervene in the insertion of ribosomal proteins within pre-ribosomal particles, the ribosomal subunit precursors, as well as in pre-ribosomal RNA (rRNA) processing and folding. Here, we review the intricate nuclear and cytoplasmic maturation steps of pre-40S particles, the precursors to the small ribosomal subunits, in both yeast and human cells, with particular emphasis on the timing and mechanisms of AF association with and dissociation from pre-40S particles and the roles of these AFs in the maturation process. We highlight the particularly complex pre-rRNA processing pathway in human cells, compared to yeast, to generate the mature 18S rRNA. We discuss the information gained from the recently published cryo-electron microscopy atomic models of yeast and human pre-40S particles, as well as the checkpoint/quality control systems that seem to operate to probe functional sites within yeast cytoplasmic pre-40S particles. This article is categorized under: RNA Processing > rRNA Processing Translation > Ribosome Biogenesis.


Asunto(s)
Precursores del ARN , ARN Ribosómico , Animales , Humanos , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO Rep ; 18(12): 2197-2218, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29079657

RESUMEN

Gene expression regulation is essential for cells to adapt to changes in their environment. Co-activator complexes have well-established roles in transcriptional regulation, but less is known about how they sense and respond to signaling cues. We have previously shown that, in fission yeast, one such co-activator, the SAGA complex, controls gene expression and the switch from proliferation to differentiation in response to nutrient availability. Here, using a combination of genetic, biochemical, and proteomic approaches, we show that SAGA responds to nutrients through the differential phosphorylation of its Taf12 component, downstream of both the TORC1 and TORC2 pathways. Taf12 phosphorylation increases early upon starvation and is controlled by the opposing activities of the PP2A phosphatase, which is activated by TORC1, and the TORC2-activated Gad8AKT kinase. Mutational analyses suggest that Taf12 phosphorylation prevents cells from committing to differentiation until starvation reaches a critical level. Overall, our work reveals that SAGA is a direct target of nutrient-sensing pathways and has uncovered a mechanism by which TORC1 and TORC2 converge to control gene expression and cell fate decisions.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Citoplasma/metabolismo , Mutación , Fosforilación/genética , Proteómica/métodos , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Transcripción Genética
5.
Enzymes ; 41: 169-213, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28601222

RESUMEN

Ribosomal RNAs contain numerous 2'-O-methylated nucleosides and pseudouridines. Methylation of the 2' oxygen of ribose moieties and isomerization of uridines into pseudouridines are catalyzed by C/D and H/ACA small nucleolar ribonucleoprotein particles, respectively. We review the composition, structure, and mode of action of archaeal and eukaryotic C/D and H/ACA particles. Most rRNA modifications cluster in functionally crucial regions of the rRNAs, suggesting they play important roles in translation. Some of these modifications promote global translation efficiency or modulate translation fidelity. Strikingly, recent quantitative nucleoside modification profiling methods have revealed that a subset of modification sites is not always fully modified. The finding of such ribosome heterogeneity is in line with the concept of specialized ribosomes that could preferentially translate specific mRNAs. This emerging concept is supported by findings that some human diseases are caused by defects in the rRNA modification machinery correlated with a significant alteration of IRES-dependent translation.


Asunto(s)
Eucariontes/genética , Nucleósidos/química , Nucleósidos/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , Humanos , Nucleósidos/genética , Seudouridina/química , Seudouridina/genética , Seudouridina/metabolismo , ARN Ribosómico/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo
6.
Curr Biol ; 24(14): 1628-1635, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25017211

RESUMEN

The contractile actin cortex is a thin layer of actin, myosin, and actin-binding proteins that subtends the membrane of animal cells. The cortex is the main determinant of cell shape and plays a fundamental role in cell division [1-3], migration [4], and tissue morphogenesis [5]. For example, cortex contractility plays a crucial role in amoeboid migration of metastatic cells [6] and during division, where its misregulation can lead to aneuploidy [7]. Despite its importance, our knowledge of the cortex is poor, and even the proteins nucleating it remain unknown, though a number of candidates have been proposed based on indirect evidence [8-15]. Here, we used two independent approaches to identify cortical actin nucleators: a proteomic analysis using cortex-rich isolated blebs, and a localization/small hairpin RNA (shRNA) screen searching for phenotypes with a weakened cortex or altered contractility. This unbiased study revealed that two proteins generated the majority of cortical actin: the formin mDia1 and the Arp2/3 complex. Each nucleator contributed a similar amount of F-actin to the cortex but had very different accumulation kinetics. Electron microscopy examination revealed that each nucleator affected cortical network architecture differently. mDia1 depletion led to failure in division, but Arp2/3 depletion did not. Interestingly, despite not affecting division on its own, Arp2/3 inhibition potentiated the effect of mDia1 depletion. Our findings indicate that the bulk of the actin cortex is nucleated by mDia1 and Arp2/3 and suggest a mechanism for rapid fine-tuning of cortex structure and mechanics by adjusting the relative contribution of each nucleator.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/antagonistas & inhibidores , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , División Celular/fisiología , Línea Celular Tumoral , Forma de la Célula/fisiología , Extensiones de la Superficie Celular/metabolismo , Forminas , Células HeLa , Humanos , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica de Rastreo , Interferencia de ARN , ARN Interferente Pequeño
7.
Genes Dev ; 28(4): 357-71, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24532714

RESUMEN

The mammalian target of rapamycin (mTOR) promotes cell growth and proliferation by promoting mRNA translation and increasing the protein synthetic capacity of the cell. Although mTOR globally promotes translation by regulating the mRNA 5' cap-binding protein eIF4E (eukaryotic initiation factor 4E), it also preferentially regulates the translation of certain classes of mRNA via unclear mechanisms. To help fill this gap in knowledge, we performed a quantitative proteomic screen to identify proteins that associate with the mRNA 5' cap in an mTOR-dependent manner. Using this approach, we identified many potential regulatory factors, including the putative RNA-binding protein LARP1 (La-related protein 1). Our results indicate that LARP1 associates with actively translating ribosomes via PABP and that LARP1 stimulates the translation of mRNAs containing a 5' terminal oligopyrimidine (TOP) motif, encoding for components of the translational machinery. We found that LARP1 associates with the mTOR complex 1 (mTORC1) and is required for global protein synthesis as well as cell growth and proliferation. Together, these data reveal important molecular mechanisms involved in TOP mRNA translation and implicate LARP1 as an important regulator of cell growth and proliferation.


Asunto(s)
Autoantígenos/metabolismo , Regulación de la Expresión Génica , Proteómica , Pirimidinas/metabolismo , ARN Mensajero/genética , Ribonucleoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autoantígenos/genética , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Ratones , Proteínas de Unión a Caperuzas de ARN/metabolismo , Ribonucleoproteínas/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Antígeno SS-B
8.
Cytoskeleton (Hoboken) ; 70(11): 741-54, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24136886

RESUMEN

The cellular actin cortex is the cytoskeletal structure primarily responsible for the control of animal cell shape and as such plays a central role in cell division, migration, and tissue morphogenesis. Due to the lack of experimental systems where the cortex can be investigated independently from other organelles, little is known about its composition, assembly, and homeostasis. Here, we describe novel tools to resolve the composition and regulation of the cortex. We report and validate a protocol for cortex purification based on the separation of cellular blebs. Mass spectrometry analysis of purified cortices provides a first extensive list of cortical components. To assess the function of identified proteins, we design an automated imaging assay for precise quantification of cortical actomyosin assembly dynamics. We show subtle changes in cortex assembly dynamics upon depletion of the identified cortical component profilin. Our widely applicable integrated method paves the way for systems-level investigations of the actomyosin cortex and its regulation during morphogenesis.


Asunto(s)
Actinas/metabolismo , Estructuras Celulares/metabolismo , Homeostasis , Imagenología Tridimensional/métodos , Proteómica/métodos , Actomiosina/metabolismo , Estructuras Celulares/ultraestructura , Células HeLa , Humanos , Profilinas/metabolismo
9.
Oncogene ; 32(24): 2917-2926, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22797077

RESUMEN

The Ras/mitogen-activated protein kinase (MAPK) signalling cascade regulates various biological functions, including cell growth, proliferation and survival. As such, this pathway is often deregulated in cancer, including melanomas, which frequently harbour activating mutations in the NRAS and BRAF oncogenes. Hyperactive MAPK signalling is known to promote protein synthesis, but the mechanisms by which this occurs remain poorly understood. Here, we show that expression of oncogenic forms of Ras and Raf promotes the constitutive activation of the mammalian target of rapamycin (mTOR). Using pharmacological inhibitors and RNA interference, we find that the MAPK-activated protein kinase RSK (p90 ribosomal S6 kinase) is partly required for these effects. Using melanoma cell lines carrying activating BRAF mutations, we show that ERK/RSK signalling regulates assembly of the translation initiation complex and polysome formation, as well as the translation of growth-related messenger RNAs containing a 5'-terminal oligopyrimidine (TOP) motif. Accordingly, we find that RSK inhibition abrogates tumour growth in mice. Our findings indicate that RSK may be a valuable therapeutic target for the treatment of tumours characterized by deregulated MAPK signalling, such as melanoma.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Melanoma/metabolismo , Melanoma/patología , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica , Activación Enzimática/efectos de los fármacos , Factor 4F Eucariótico de Iniciación/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Melanoma/enzimología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo
10.
Biochem J ; 441(2): 553-69, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22187936

RESUMEN

The RSK (90 kDa ribosomal S6 kinase) family comprises a group of highly related serine/threonine kinases that regulate diverse cellular processes, including cell growth, proliferation, survival and motility. This family includes four vertebrate isoforms (RSK1, RSK2, RSK3 and RSK4), and single family member orthologues are also present in Drosophila and Caenorhabditis elegans. The RSK isoforms are downstream effectors of the Ras/ERK (extracellular-signal-regulated kinase) signalling pathway. Significant advances in the field of RSK signalling have occurred in the past few years, including several new functions ascribed to the RSK isoforms, the discovery of novel protein substrates and the implication of different RSK isoforms in cancer. Collectively, these new findings increase the diversity of biological functions regulated by RSK, and highlight potential new directions of research. In the present paper, we review the structure, expression and activation mechanisms of the RSK isoforms, and discuss their physiological roles on the basis of established substrates and recent discoveries.


Asunto(s)
Proteínas Quinasas S6 Ribosómicas 90-kDa/fisiología , Secuencia de Aminoácidos , Animales , Puntos de Control del Ciclo Celular/fisiología , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Activación Enzimática/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Isoenzimas/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Alineación de Secuencia
11.
J Biol Chem ; 286(1): 567-77, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21071439

RESUMEN

The Ras/mitogen-activated protein kinase (MAPK) pathway regulates a variety of cellular processes by activating specific transcriptional and translational programs. Ras/MAPK signaling promotes mRNA translation and protein synthesis, but the exact molecular mechanisms underlying this regulation remain poorly understood. Increasing evidence suggests that the mammalian target of rapamycin (mTOR) plays an essential role in this process. Here, we show that Raptor, an essential scaffolding protein of the mTOR complex 1 (mTORC1), becomes phosphorylated on proline-directed sites following activation of the Ras/MAPK pathway. We found that ERK1 and ERK2 interact with Raptor in cells and mediate its phosphorylation in vivo and in vitro. Using mass spectrometry and phosphospecific antibodies, we found three proline-directed residues within Raptor, Ser(8), Ser(696), and Ser(863), which are directly phosphorylated by ERK1/2. Expression of phosphorylation-deficient alleles of Raptor revealed that phosphorylation of these sites by ERK1/2 normally promotes mTORC1 activity and signaling to downstream substrates, such as 4E-BP1. Our data provide a novel regulatory mechanism by which mitogenic and oncogenic activation of the Ras/MAPK pathway promotes mTOR signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Proliferación Celular , Humanos , Sistema de Señalización de MAP Quinasas , Diana Mecanicista del Complejo 1 de la Rapamicina , Datos de Secuencia Molecular , Complejos Multiproteicos , Fosforilación , Prolina/metabolismo , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR
12.
Expert Opin Ther Targets ; 15(1): 5-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20958120

RESUMEN

The 90 kDa ribosomal S6 kinase (RSK) family is a group of highly conserved Ser/Thr kinases that promote cell proliferation, growth, motility and survival. Deregulated RSK expression or activity has been associated with several human diseases, including cancer. RSK lies downstream of the Ras/mitogen-activated protein kinase (MAPK) signalling pathway and is directly phosphorylated by the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Significant advances in the field of RSK signalling have occurred in the past few years, unravelling novel RSK cellular substrates and biological functions as well as new RSK regulatory mechanisms. Together, these findings suggest that RSK may be a promising therapeutic target for the treatment of cancer, particularly those characterized by oncogenic mutations in components of the Ras signalling pathway. This article briefly describes our current knowledge on the impact of RSK on cell growth and proliferation, as well as RSK-dependent mechanisms associated with tumourigenesis. The potential of targeting RSK in cancer is discussed in light of available data on the biological functions of each RSK family members. Targeting RSK with small molecule inhibitors appears to be a promising path for cancer therapy, but several considerations need to be evaluated and will be discussed in detail.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proliferación Celular , Sistemas de Liberación de Medicamentos , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias/fisiopatología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
13.
J Biol Chem ; 285(1): 80-94, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19864431

RESUMEN

The rapamycin-sensitive mTOR complex 1 (mTORC1) promotes protein synthesis, cell growth, and cell proliferation in response to growth factors and nutritional cues. To elucidate the poorly defined mechanisms underlying mTORC1 regulation, we have studied the phosphorylation of raptor, an mTOR-interacting partner. We have identified six raptor phosphorylation sites that lie in two centrally localized clusters (cluster 1, Ser(696)/Thr(706) and cluster 2, Ser(855)/Ser(859)/Ser(863)/Ser(877)) using tandem mass spectrometry and generated phosphospecific antibodies for each of these sites. Here we focus primarily although not exclusively on raptor Ser(863) phosphorylation. We report that insulin promotes mTORC1-associated phosphorylation of raptor Ser(863) via the canonical PI3K/TSC/Rheb pathway in a rapamycin-sensitive manner. mTORC1 activation by other stimuli (e.g. amino acids, epidermal growth factor/MAPK signaling, and cellular energy) also promote raptor Ser(863) phosphorylation. Rheb overexpression increases phosphorylation on raptor Ser(863) as well as on the five other identified sites (e.g. Ser(859), Ser(855), Ser(877), Ser(696), and Thr(706)). Strikingly, raptor Ser(863) phosphorylation is absolutely required for raptor Ser(859) and Ser(855) phosphorylation. These data suggest that mTORC1 activation leads to raptor multisite phosphorylation and that raptor Ser(863) phosphorylation functions as a master biochemical switch that modulates hierarchical raptor phosphorylation (e.g. on Ser(859) and Ser(855)). Importantly, mTORC1 containing phosphorylation site-defective raptor exhibits reduced in vitro kinase activity toward the substrate 4EBP1, with a multisite raptor 6A mutant more strongly defective that single-site raptor S863A. Taken together, these data suggest that complex raptor phosphorylation functions as a biochemical rheostat that modulates mTORC1 signaling in accordance with environmental cues.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas/química , Proteínas/metabolismo , Serina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Línea Celular , Factor de Crecimiento Epidérmico/farmacología , Humanos , Insulina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Neuropéptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteína Homóloga de Ras Enriquecida en el Cerebro , Ratas , Proteína Reguladora Asociada a mTOR , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR , Espectrometría de Masas en Tándem , Termodinámica , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
14.
Methods Mol Biol ; 415: 379-94, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18370166

RESUMEN

Invertebrates lack an adaptive immune system and rely on innate immunity to resist pathogens. The response of Drosophila melanogaster to bacterial and fungal infections involves two signaling pathways, Toll and Imd, both of which activate members of the nuclear factor (NF)-kappaB family of transcription factors, leading to antimicrobial peptide (AMP) gene expression. In this chapter, we present the current methods used in our laboratory to monitor the activity of both signaling pathways.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Inmunidad/inmunología , Biología Molecular/métodos , Transducción de Señal , Receptores Toll-Like/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Infecciones Bacterianas/microbiología , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Regulación de la Expresión Génica , Genes Reporteros , Larva/inmunología , Larva/microbiología , Micosis/microbiología , Análisis de Supervivencia
15.
FEBS Lett ; 581(18): 3387-90, 2007 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-17603047

RESUMEN

The busA locus of Lactococcus lactis encodes a glycine betaine uptake system. At low osmolarity, the transcription of busA is repressed by the BusR protein, which is responsible for the osmotic inducibility of the busA promoter (busAp). In this work, we investigated the mechanism of the osmo-dependent repression by BusR. We found that BusR binding to the busA promoter is dependent on the ionic strength in vitro. Using a BusR derivative carrying a phosphorylation site and the Escherichia coli RNA polymerase holoenzyme, we showed that these proteins are able to form a stable ternary complex by both binding to the same busAp fragment. The association/dissociation of BusR to the RNA polymerase-busAp complex is strictly correlated to the surrounding ionic strength. Together, these results suggest that during growth at low osmolarity BusR represses transcription from busAp at a step further the recruitment of the RNA polymerase. At high osmolarity, an elevated cytoplasmic ionic strength would dissociate BusR from busAp, resulting in the osmotic induction of the busA operon.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Lactococcus lactis/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética/genética , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Glutamatos/metabolismo , Lactococcus lactis/genética , Concentración Osmolar , Unión Proteica
16.
Cell ; 127(1): 157-70, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-17018283

RESUMEN

The monomeric RalGTPases, RalA and RalB are recognized as components of a regulatory framework supporting tumorigenic transformation. Specifically, RalB is required to suppress apoptotic checkpoint activation, the mechanistic basis of which is unknown. Reported effector proteins of RalB include the Sec5 component of the exocyst, an octameric protein complex implicated in tethering of vesicles to membranes. Surprisingly, we find that the RalB/Sec5 effector complex directly recruits and activates the atypical IkappaB kinase family member TBK1. In cancer cells, constitutive engagement of this pathway, via chronic RalB activation, restricts initiation of apoptotic programs typically engaged in the context of oncogenic stress. Although dispensable for survival in a nontumorigenic context, this pathway helps mount an innate immune response to virus exposure. These observations define the mechanistic contribution of RalGTPases to cancer cell survival and reveal the RalB/Sec5 effector complex as a component of TBK1-dependent innate immune signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Supervivencia Celular , Inmunidad Innata/fisiología , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP ral/metabolismo , Animales , Apoptosis/fisiología , Proteínas Portadoras/genética , Transformación Celular Neoplásica , Activación Enzimática , Células HeLa , Humanos , Ratones , Ratones Noqueados , Complejos Multiproteicos , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Transporte Vesicular , Proteínas de Unión al GTP ral/genética
17.
Curr Biol ; 16(8): 808-13, 2006 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-16631589

RESUMEN

Unlike mammalian Toll-like Receptors, the Drosophila Toll receptor does not interact directly with microbial determinants but is rather activated upon binding a cleaved form of the cytokine-like molecule Spatzle (Spz). During the immune response, Spz is thought to be processed by secreted serine proteases (SPs) present in the hemolymph that are activated by the recognition of gram-positive bacteria or fungi . In the present study, we have used an in vivo RNAi strategy to inactivate 75 distinct Drosophila SP genes. We then screened this collection for SPs regulating the activation of the Toll pathway by gram-positive bacteria. Here, we report the identification of five novel SPs that function in an extracellular pathway linking the recognition proteins GNBP1 and PGRP-SA to Spz. Interestingly, four of these genes are also required for Toll activation by fungi, while one is specifically associated with signaling in response to gram-positive bacterial infections. These results demonstrate the existence of a common cascade of SPs upstream of Spz, integrating signals sent by various secreted recognition molecules via more specialized SPs.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/inmunología , Serina Endopeptidasas/fisiología , Receptores Toll-Like/metabolismo , Animales , Proteínas Portadoras/metabolismo , Enterococcus faecalis , Infecciones por Bacterias Grampositivas/inmunología , Micrococcus luteus , Interferencia de ARN , Serina Endopeptidasas/genética
18.
Mol Microbiol ; 47(4): 1135-47, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12581365

RESUMEN

The busA (opuA) locus of Lactococcus lactis encodes a glycine betaine uptake system. Transcription of busA is osmotically inducible and its induction after an osmotic stress is reduced in the presence of glycine betaine. Using a genetic screen in CLG802, an Escherichia coli strain carrying a lacZ transcriptional fusion expressed under the control of the busA promoter, we isolated a genomic fragment from the L. lactis subsp. cremoris strain MG1363, which represses transcription from busAp. The cloned locus responsible for this repression was identified as a gene present upstream from the busA operon, encoding a putative DNA binding protein. This gene was named busR. Electrophoretic mobility shift and footprinting experiments showed that BusR is able to bind a site that overlaps the busA promoter. Overexpression of busR in L. lactis reduced expression of busA. Its disruption led to increased and essentially constitutive transcription of busA at low osmolarity. Therefore, BusR is a major actor of the osmotic regulation of busA in L. lactis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Betaína/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Transporte Biológico Activo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Operón Lac , Datos de Secuencia Molecular , Operón , Regiones Promotoras Genéticas , Transcripción Genética , Equilibrio Hidroelectrolítico
19.
Development ; 130(3): 575-86, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12490563

RESUMEN

Diversification of Drosophila segmental and cellular identities both require the combinatorial function of homeodomain-containing transcription factors. Ectopic expression of the mouthparts selector proboscipedia (pb) directs a homeotic antenna-to-maxillary palp transformation. It also induces a dosage-sensitive eye loss that we used to screen for dominant Enhancer mutations. Four such Enhancer mutations were alleles of the eyeless (ey) gene that encode truncated EY proteins. Apart from eye loss, these new eyeless alleles lead to defects in the adult olfactory appendages: the maxillary palps and antennae. In support of these observations, both ey and pb are expressed in cell subsets of the prepupal maxillary primordium of the antennal imaginal disc, beginning early in pupal development. Transient co-expression is detected early after this onset, but is apparently resolved to yield exclusive groups of cells expressing either PB or EY proteins. A combination of in vivo and in vitro approaches indicates that PB suppresses EY transactivation activity via protein-protein contacts of the PB homeodomain and EY Paired domain. The direct functional antagonism between PB and EY proteins suggests a novel crosstalk mechanism integrating known selector functions in Drosophila head morphogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/genética , Genes Homeobox , Genes de Insecto , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Anomalías del Ojo/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Cabeza/crecimiento & desarrollo , Proteínas de Homeodominio/fisiología , Técnicas In Vitro , Masculino , Maxilar/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación , Fenotipo , Factores de Transcripción/fisiología , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA