Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Psychophysiology ; 61(5): e14498, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38071405

RESUMEN

Alpha power modulations and slow negative potentials have previously been associated with anticipatory processes in spatial and temporal top-down attention. In typical experimental designs, however, neural responses triggered by transient stimulus onsets can interfere with attention-driven activity patterns and our interpretation of such. Here, we investigated these signatures of spatio-temporal attention in a dynamic paradigm free from potentially confounding stimulus-driven activity using electroencephalography. Participants attended the cued side of a bilateral stimulus rotation and mentally counted how often one of two remembered sample orientations (i.e., the target) was displayed while ignoring the uncued side and non-target orientation. Afterwards, participants performed a delayed match-to-sample task, in which they indicated if the orientation of a probe stimulus matched the corresponding sample orientation (previously target or non-target). We observed dynamic alpha power reductions and slow negative waves around task-relevant points in space and time (i.e., onset of the target orientation in the cued hemifield) over posterior electrodes contralateral to the locus of attention. In contrast to static alpha power lateralization, these dynamic signatures correlated with subsequent memory performance (primarily detriments for matching probes of the non-target orientation), suggesting a preferential allocation of attention to task-relevant locations and time points at the expense of reduced resources and impaired performance for information outside the current focus of attention. Our findings suggest that humans can naturally and dynamically focus their attention at relevant points in space and time and that such spatio-temporal attention shifts can be reflected by dynamic alpha power modulations and slow negative potentials.


Asunto(s)
Cognición , Electroencefalografía , Humanos , Señales (Psicología) , Percepción Espacial/fisiología , Estimulación Luminosa , Ritmo alfa
2.
Br J Psychol ; 110(2): 245-255, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30079531

RESUMEN

Nesting of fast rhythmical brain activity (gamma) into slower brain waves (theta) has frequently been suggested as a core mechanism of multi-item working memory (WM) retention. It provides a better understanding of WM capacity limitations, and, as we discuss in this review article, it can lead to applications for modulating memory capacity. However, could cross-frequency coupling of brain oscillations also constructively contribute to a better understanding of the neuronal signatures of working memory compatible with theoretical approaches that assume flexible capacity limits? Could a theta-gamma code also be considered as a neural mechanism of flexible sharing of cognitive resources between memory representations in multi-item WM? Here, we propose potential variants of theta-gamma coupling that could explain WM retention beyond a fixed memory capacity limit of a few visual items. Moreover, we suggest how to empirically test these predictions in the future.


Asunto(s)
Corteza Cerebral/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Ritmo Gamma/fisiología , Memoria a Corto Plazo/fisiología , Ritmo Teta/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA