Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Physiol (Oxf) ; 210(4): 733-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24495317

RESUMEN

The discovery of adipokines has revealed adipose tissue as a central node in the interorgan crosstalk network, which mediates the regulation of multiple organs and tissues. Adipose tissue is a true endocrine organ that produces and secretes a wide range of mediators regulating adipose tissue function in an auto-/paracrine manner and important distant targets, such as the liver, skeletal muscle, the pancreas and the cardiovascular system. In metabolic disorders such as obesity, enlargement of adipocytes leads to adipose tissue dysfunction and a shift in the secretory profile with an increased release of pro-inflammatory adipokines. Adipose tissue dysfunction has a central role in the development of insulin resistance, type 2 diabetes, and cardiovascular diseases. Besides the well-acknowledged role of adipokines in metabolic diseases, and the increasing number of adipokines being discovered in the last years, the mechanisms underlying the release of many adipokines from adipose tissue remain largely unknown. To combat metabolic diseases, it is crucial to better understand how adipokines can modulate adipose tissue growth and function. Therefore, we will focus on adipokines with a prominent role in auto-/paracrine crosstalk within the adipose tissue such as RBP4, HO-1, WISP2, SFRPs and chemerin. To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, we will report the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and ß-cell growth and function.


Asunto(s)
Tejido Adiposo/metabolismo , Transducción de Señal/fisiología , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/fisiología , Aparato de Golgi/metabolismo , Humanos
2.
Diabetologia ; 52(11): 2455-2463, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19727662

RESUMEN

AIMS/HYPOTHESIS: Extracellular pre-B cell colony-enhancing factor/nicotinamide phosphoribosyltransferase/visfatin (ePBEF/NAMPT/visfatin) is an adipocytokine, whose circulating levels are enhanced in metabolic disorders, such as diabetes mellitus and obesity. Here, we explored the ability of ePBEF/NAMPT/visfatin to promote vascular inflammation, as a condition closely related to atherothrombotic diseases. We specifically studied the ability of PBEF/NAMPT/visfatin to directly activate pathways leading to inducible nitric oxide synthase (iNOS) induction in cultured human aortic smooth muscle cells, as well as the mechanisms involved. METHODS: iNOS levels and extracellular signal-regulated kinase (ERK) 1/2 activity were determined by western blotting. Nuclear factor (NF)-kappaB activity was assessed by electrophoretic mobility shift assay. RESULTS: ePBEF/NAMPT/visfatin (10-250 ng/ml) induced iNOS in a concentration-dependent manner. At a submaximal concentration (100 ng/ml), ePBEF/NAMPT/visfatin time-dependently enhanced iNOS levels up to 18 h after stimulation. Over this time period, ePBEF/NAMPT/visfatin elicited a sustained activation of NF-kappaB and triggered a biphasic ERK 1/2 activation. By using the respective ERK 1/2 and NF-kappaB inhibitors, PD98059 and pyrrolidine dithiocarbamate, we established that iNOS induction by ePBEF/NAMPT/visfatin required the consecutive upstream activation of ERK 1/2 and NF-kappaB. The pro-inflammatory action of ePBEF/NAMPT/visfatin was not prevented by insulin receptor blockade. However, exogenous nicotinamide mononucleotide, the product of NAMPT activity, mimicked NF-kappaB activation and iNOS induction by ePBEF/NAMPT/visfatin, while the NAMPT inhibitor APO866 prevented the effects of ePBEF/NAMPT/visfatin on iNOS and NF-kappaB. CONCLUSIONS/INTERPRETATION: Through its intrinsic NAMPT activity, ePBEF/NAMPT/visfatin appears to be a direct contributor to vascular inflammation, a key feature of atherothrombotic diseases linked to metabolic disorders.


Asunto(s)
Citocinas/farmacología , Citocinas/fisiología , Músculo Liso Vascular/fisiología , Nicotinamida Fosforribosiltransferasa/metabolismo , Aorta/citología , Aorta/efectos de los fármacos , Aorta/metabolismo , Técnicas de Cultivo de Célula , Diabetes Mellitus/sangre , Diabetes Mellitus/fisiopatología , Flavonoides/farmacología , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Cinética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Nicotinamida Fosforribosiltransferasa/farmacología , Nicotinamida Fosforribosiltransferasa/fisiología , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Obesidad/sangre , Obesidad/fisiopatología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA