Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem J ; 477(8): 1459-1478, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32242623

RESUMEN

Clostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently solved crystal structure of CspC revealed that its pseudoactive site residues align closely with the catalytic triad of CspB, suggesting that it might be possible to 'resurrect' the ancestral protease activity of the CspC and CspA pseudoproteases. Here, we demonstrate that restoring the catalytic triad to these pseudoproteases fails to resurrect their protease activity. We further show that the pseudoactive site substitutions differentially affect the stability and function of the CspC and CspA pseudoproteases: the substitutions destabilized CspC and impaired spore germination without affecting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results indicate that bioinformatic predictions of enzyme activity may underestimate pseudoenzymes in rare cases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Clostridioides difficile/enzimología , Esporas Bacterianas/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Catálisis , Clostridioides difficile/química , Clostridioides difficile/genética , Clostridioides difficile/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Esporas Bacterianas/enzimología , Esporas Bacterianas/genética
2.
PLoS Genet ; 15(7): e1008224, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31276487

RESUMEN

The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC's unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC's responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/farmacología , Proteínas Portadoras/metabolismo , Clostridioides difficile/fisiología , Esporas Bacterianas/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Mutación , Conformación Proteica , Estrés Fisiológico
3.
J Bacteriol ; 200(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29158241

RESUMEN

The alarmone ppGpp is a critical regulator of virulence gene expression in Francisella tularensis In this intracellular pathogen, ppGpp is thought to work in concert with the putative DNA-binding protein PigR and the SspA protein family members MglA and SspA to control a common set of genes. MglA and SspA form a complex that interacts with RNA polymerase (RNAP), and PigR functions by interacting with the RNAP-associated MglA-SspA complex. Prior work suggested that ppGpp indirectly exerts its regulatory effects in F. tularensis by promoting the accumulation of polyphosphate in the cell, which in turn was required for formation of the MglA-SspA complex. Here we show that in Escherichia coli, neither polyphosphate nor ppGpp is required for formation of the MglA-SspA complex but that ppGpp promotes the interaction between PigR and the MglA-SspA complex. Moreover, we show that polyphosphate kinase, the enzyme responsible for the synthesis of polyphosphate, antagonizes virulence gene expression in F. tularensis, a finding that is inconsistent with the notion that polyphosphate accumulation promotes virulence gene expression in this organism. Our findings identify polyphosphate kinase as a novel negative regulator of virulence gene expression in F. tularensis and support a model in which ppGpp exerts its positive regulatory effects by promoting the interaction between PigR and the MglA-SspA complex.IMPORTANCE In Francisella tularensis, MglA and SspA form a complex that associates with RNA polymerase to positively control the expression of key virulence genes. The MglA-SspA complex works together with the putative DNA-binding protein PigR and the alarmone ppGpp. PigR functions by interacting directly with the MglA-SspA complex, but how ppGpp exerts its effects was unclear. Prior work indicated that ppGpp acts by promoting the accumulation of polyphosphate, which is required for MglA and SspA to interact. Here we show that formation of the MglA-SspA complex does not require polyphosphate. Furthermore, we find that polyphosphate antagonizes the expression of virulence genes in F. tularensis Thus, ppGpp does not promote virulence gene expression in this organism through an effect on polyphosphate.


Asunto(s)
Francisella tularensis/genética , Francisella tularensis/patogenicidad , Regulación Bacteriana de la Expresión Génica , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Francisella tularensis/enzimología , Islas Genómicas , Macrófagos/microbiología , Ratones , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Polifosfatos/metabolismo , Unión Proteica , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Virulencia/genética
4.
Genes Dev ; 31(15): 1549-1560, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864445

RESUMEN

Francisella tularensis, the etiological agent of tularemia, is one of the most infectious bacteria known. Because of its extreme pathogenicity, F. tularensis is classified as a category A bioweapon by the US government. F. tularensis virulence stems from genes encoded on the Francisella pathogenicity island (FPI). An unusual set of Francisella regulators-the heteromeric macrophage growth locus protein A (MglA)-stringent starvation protein A (SspA) complex and the DNA-binding protein pathogenicity island gene regulator (PigR)-activates FPI transcription and thus is essential for virulence. Intriguingly, the second messenger, guanosine-tetraphosphate (ppGpp), which is produced during infection, is also involved in coordinating Francisella virulence; however, its role has been unclear. Here we identify MglA-SspA as a novel ppGpp-binding complex and describe structures of apo- and ppGpp-bound MglA-SspA. We demonstrate that MglA-SspA, which binds RNA polymerase (RNAP), also interacts with the C-terminal domain of PigR, thus anchoring the (MglA-SspA)-RNAP complex to the FPI promoter. Furthermore, we show that MglA-SspA must be bound to ppGpp to mediate high-affinity interactions with PigR. Thus, these studies unveil a novel pathway different from those described previously for regulation of transcription by ppGpp. The data also indicate that F. tularensis pathogenesis is controlled by a highly interconnected molecular circuitry in which the virulence machinery directly senses infection via a small molecule stress signal.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Francisella tularensis/patogenicidad , Islas Genómicas/genética , Guanosina Tetrafosfato/metabolismo , Tularemia/microbiología , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Bioterrorismo/prevención & control , Células Cultivadas , Cristalografía , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/genética , Humanos , Macrófagos/metabolismo , Conformación Proteica , Transcripción Genética , Virulencia/genética
5.
J Bacteriol ; 196(19): 3516-26, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25070738

RESUMEN

In Francisella tularensis, the putative DNA-binding protein PigR works in concert with the SspA protein family members MglA and SspA to control the expression of genes that are essential for the intramacrophage growth and survival of the organism. MglA and SspA form a complex that interacts with RNA polymerase (RNAP), and this interaction between the MglA-SspA complex and RNAP is thought to be critical to its regulatory function. How PigR works in concert with the MglA-SspA complex is not known; previously published findings differ over whether PigR interacts with the MglA-SspA complex, leading to disparate models for how PigR and the MglA-SspA complex exert their regulatory effects. Here, using a combination of genetic assays, we identify mutants of MglA and SspA that are specifically defective for interaction with PigR. Analysis of the MglA and SspA mutants in F. tularensis reveals that interaction between PigR and the MglA-SspA complex is essential in order for PigR to work coordinately with MglA and SspA to positively regulate the expression of virulence genes. Our findings uncover a surface of the MglA-SspA complex that is important for interaction with PigR and support the idea that PigR exerts its regulatory effects through an interaction with the RNAP-associated MglA-SspA complex.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Francisella tularensis/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/metabolismo , Adhesinas Bacterianas/genética , Proteínas Bacterianas/genética , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Unión Proteica , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA