Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37241599

RESUMEN

In this study, a subminiature implantable capacitive pressure sensor is proposed for biomedical applications. The proposed pressure sensor comprises an array of elastic silicon nitride (SiN) diaphragms formed by the application of a polysilicon (p-Si) sacrificial layer. In addition, using the p-Si layer, a resistive temperature sensor is also integrated into one device without additional fabrication steps or extra cost, thus enabling the device to measure pressure and temperature simultaneously. The sensor with a size of 0.5 × 1.2 mm was fabricated using microelectromechanical systems (MEMS) technology and was packaged in needle-shaped metal housing that is both insertable and biocompatible. The packaged pressure sensor immersed in a physiological saline solution exhibited excellent performance without leakage. The sensor achieved a sensitivity of approximately 1.73 pF/bar and a hysteresis of about 1.7%, respectively. Furthermore, it was confirmed that the pressure sensor operated normally for 48 h without experiencing insulation breakdown or degradation of the capacitance. The integrated resistive temperature sensor also worked properly. The response of the temperature sensor varied linearly with temperature variation. It had an acceptable temperature coefficient of resistance (TCR) of approximately 0.25%/°C.

2.
PLoS One ; 17(6): e0269894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35709172

RESUMEN

Male infertility affects up to 12% of men. Although manual testing using microscope examination and computer-assisted semen analysis are standard methods of measuring sperm count and motility, these methods are limited by being laboratory based. To investigate the usefulness of a novel semen analysis device using a smartphone camera. This prospective multicenter randomized parallel design trial enrolled 200 men aged ≥19 years of age between August and December 2018. Each subject was advised to use the Smart Sperm Test for OVIEW-M at home after 5 days of abstinence. The accuracy of the OVIEW-M test relative to the in-hospital test was determined. A questionnaire was administered to assess subject likelihood of using the OVIEW-M. Measurements using standard methods and the OVIEW-M showed similar sperm counts and similar motile sperm counts. Correlation analysis showed significant correlations between sperm count and sperm motility when measured by OVIEW-M tests (r = 0.893, p < 0.01) and standard microscope examination (r = 0.883, p < 0.01). Of the subjects who responded to questionnaires, 43% regarded the results of the OVIEW-M tests as reliable and 18% as unreliable. Semen analysis with the smartphone-based application and accessories yielded results not inferior to those of laboratory tests. Men who visit the hospital for evaluation of infertility can easily perform OVIEW-M semen tests at home.


Asunto(s)
COVID-19 , Infertilidad Masculina , COVID-19/diagnóstico , Humanos , Infertilidad Masculina/diagnóstico , Masculino , Estudios Prospectivos , Semen , Análisis de Semen/métodos , Teléfono Inteligente , Recuento de Espermatozoides , Motilidad Espermática , Espermatozoides
3.
Sensors (Basel) ; 11(3): 2580-91, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163756

RESUMEN

One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20 ms, indicating a very high efficiency of pulse driving.


Asunto(s)
Gases/análisis , Calefacción/instrumentación , Sistemas Microelectromecánicos/instrumentación , Temperatura , Simulación por Computador , Electricidad , Diseño de Equipo , Análisis de Elementos Finitos , Rayos Infrarrojos , Análisis Numérico Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA