Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 11006, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040041

RESUMEN

Visual floral characters play an important role in shaping plant-pollinator interactions. The genus Fritillaria L. (Liliaceae), comprising approximately 140 species, is described as displaying a remarkable variety of flower colours and sizes. Despite this variation in visual floral traits of fritillaries, little is known about the potential role of these features in shaping plant-pollinator interactions. Here, we seek to clarify the role of visual attraction in species offering a robust food reward for pollinators early in the spring, which is the case for Fritillaria. We also searched for potential tendencies in the evolution of floral traits crucial for plant-pollinator communication. The generality of species with green and purple flowers may indicate an influence of environmental factors other than pollinators. The flowers of the studied species seem to be visible but not very visually attractive to potential pollinators. The food rewards are hidden within the nodding perianth, and both traits are conserved among fritillaries. Additionally, visual floral traits are not good predictors of nectar properties. When in the flowers, pollinators are navigated by nectar guides in the form of contrasting nectary area colouration. Flower colour does not serve as a phenotypic filter against illegitimate pollinators-red and orange bird-pollinated fritillaries are visible to bees.


Asunto(s)
Flores , Fritillaria , Liliaceae , Polinización , Animales , Abejas , Fenotipo , Néctar de las Plantas
2.
Front Plant Sci ; 12: 656783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868353

RESUMEN

Pollinators are often perceived as a primary selective agent influencing flower traits such as colour, size, and nectar properties. The genus Fritillaria L. (Liliaceae), comprising approximately 150 species, is described as generally insect pollinated. However, there are at least three exceptions: two hummingbird-pollinated North American species and one passerine-pollinated Asian species. Despite this variation in pollination, little is known about flower traits that may accompany this shift in fritillaries. In this study, we aimed to assess the attractiveness of the floral traits for (new) pollinators and track the evolution of flowers traits in the context of a shift in the principal pollinator. Therefore, we studied 14 flower traits related to the pollination in 60 Fritillaria species and traced the evolutionary trajectory of these traits. We used a phylogenetic tree of the genus, based on five DNA markers (matK, rpl16, and rbcL, 18S, and ITS) to reconstruct the ancestral state of studied flower traits. The results show that in bird-pollinated species several new traits evolved. For example, flower colouration, nectar sugar, and amino acid concentration and composition fulfil the criteria of ornithophilous flowers, although flower traits do not exclude insect pollinators in bird-pollinated fritillaries. Interestingly, we recorded potential reversals from bird to insect pollination. Our analysis, showing a broad study of flower traits among closely related species in the context of pollinator shift, serves as a starting point for future work exploring the genetic and physiological mechanisms controlling flower traits in the genus Fritillaria.

3.
Front Plant Sci ; 12: 755830, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046972

RESUMEN

A vast majority of angiosperms are pollinated by animals, and a decline in the number and diversity of insects often affects plant reproduction through pollen limitation. This phenomenon may be particularly severe in rare plant species, whose populations are shrinking. Here, we examined the variability in factors shaping reproductive success and pollen limitation in red-listed Polemonium caeruleum L. During a 5-year study in several populations of P. caeruleum (7-15, depending on year), we assessed the degree of pollen limitation based on differences in seed set between open-pollinated (control) and hand-pollinated flowers. We analysed the effects of flower visitors, population size, and meteorological data on plant reproductive success and pollen limitation. Our study showed that pollen limitation rarely affected P. caeruleum populations, and was present mainly in small populations. Pollen limitation index was negatively affected by the size of population, visitation frequency of all insects, and when considering the visitation frequency of individual groups, also by honeybee visits. Seed production in control treatment was positively influenced by the population size, average monthly precipitation in June and visits of hoverflies, while visits of honeybees, average monthly temperature in September, and average monthly precipitation in August influenced seed production negatively. As generalist plant P. caeruleum can be pollinated by diverse insect groups, however, in small populations their main visitors, the honeybees and bumblebees, may be less attracted, eventually leading to the disappearance of these populations. In pollination of P. caeruleum managed honeybees may play a dual role: while they are the most frequent and efficient flower visitors, their presence decreases seed set in open-pollinated flowers, which is most probably related to efficient pollen collection by these insects.

4.
Front Plant Sci ; 11: 569811, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154761

RESUMEN

Floral color plays a key role as visual signaling and is therefore of great importance in shaping plant-pollinator interactions. Iris (Iridaceae), a genus comprising over 300 species and named after the Greek goddess of the colorful rainbow, is famous for its dazzling palette of flower colors and patterns, which vary considerably both within and among species. Despite the large variation of flower color in Iris, little is known about the phylogenetic and ecological contexts of floral color. Here, we seek to resolve the evolution of flower color in the genus Iris in a macroevolutionary framework. We used a phylogenetic analysis to reconstruct the ancestral state of flower color and other pollination-related traits (e.g., the presence of nectar and mating system), and also tracked the evolution of color variation. We further explored weather floral trait transitions are better explained by environmental or pollinator-mediated selection. Our study revealed that the most recent common ancestor likely had monomorphic, purple flowers, with a crest and a spot on the fall. The flowers were likely insect-pollinated, nectar-rewarding, and self-compatible. The diversity of floral traits we see in modern irises, likely represents a trade-off between conflicting selection pressures. Whether shifts in these flower traits result from abiotic or biotic selective agents or are maintained by neutral processes without any selection remains an open question. Our analysis serves as a starting point for future work exploring the genetic and physiological mechanisms controlling flower coloration in the most color-diverse genus Iris.

5.
Plants (Basel) ; 9(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019586

RESUMEN

Floral nectar, being a primary reward for insect visitors, is a key factor in shaping plant-pollinator interactions. However, little is known about the variability in nectar traits, which could potentially affect pollinators and the reproduction of the species. We investigated intraspecific variation in nectar traits in 14 populations of a Red-listed plant, Polemonium caeruleum. Populations varied in terms of the proportion of self-compatible and self-incompatible individuals, and insect communities visiting flowers. Using HPLC, we determined the nectar sugar and amino acid (AA) composition and concentration. We also recorded some basic habitat parameters, which could influence nectar chemistry. In seven selected populations, we investigated the taxonomic composition of the insects visiting flowers. Our observations revealed significant intraspecific variability in nectar chemistry in P. caeruleum. Nectar production was male-biased, with male-phase flowers secreting sucrose- and AA-rich nectar. An analysis revealed that variability in P. caeruleum nectar may be slightly shaped by environmental factors. The studied nectar characters, especially sugars, had little effect on insects visiting flowers. We argue that variation in nectar traits in this generalist plant is a matter of random genetic drift or "adaptive wandering" rather than directional specialization and adaptation in the most effective and abundant group of pollinators.

6.
Sci Rep ; 10(1): 1184, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31959863

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 9(1): 15209, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31645686

RESUMEN

Nectar is considered to be a primary food reward for most pollinators. It mostly contains sugars, but also has amino acids. The significance of the concentration and composition of amino acids in nectar is often less understood than that of its volume, sugar concentration and composition. However, there is a trend towards a broader approach in ecological research, which helps to understand nectar properties in an ecological context. The genus Fritillaria, exhibiting great diversity in flower morphology, nectar composition, and dominant pollinators, allows for the possibility to study some of the above. We studied the concentration and composition of amino acids in the nectar of 38 Fritillaria species attracting different groups of pollen vectors (bees, flies, passerines, and hummingbirds). The flowers of fritillaries produced nectar with a varying composition and concentration of amino acids. These differences were mostly associated with the pollinator type. The nectar of passerine bird-pollinated species was rich in amino acids, whereas humming bird-pollinated produced low amino acid nectar. Contrary to previous reports nectar of the insect-pollinated species did not contain a higher amount of proline. Two non-protein amino acids, sarcosine and norvaline, were detected in the floral nectar for the first time.


Asunto(s)
Aminoácidos/análisis , Fritillaria/fisiología , Néctar de las Plantas/química , Polinización , Aminoácidos/metabolismo , Animales , Abejas/fisiología , Evolución Biológica , Aves/fisiología , Dípteros/fisiología , Ecosistema , Flores/química , Flores/clasificación , Flores/fisiología , Fritillaria/química , Fritillaria/clasificación , Néctar de las Plantas/metabolismo
8.
Ann Bot ; 123(2): 415-428, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30059963

RESUMEN

Background and Aims: In terms of pollination systems, umbellifers (plants of the carrot family, Apiaceae) are regarded as generalists, since their (usually dichogamous) flowers are visited by a wide range of insects representing several taxonomic orders. However, recent analyses of insect effectiveness revealed that these plants may be pollinated effectively by a narrow assemblage of insect visitors. Of particular interest was whether populations of an umbellifer species varied in pollinator assemblages and whether this could lead to local specialization of the pollination system. We also explored whether variation in pollinator assemblages was associated with variation in floral traits, and whether this variation influences reproductive output. Methods: The focus was on Angelica sylvestris, a common European species visited by a taxonomically diverse insect assemblage. In three populations, located along an ~700-km transect, over three growth seasons insect visitors were identified, their effectiveness was assessed by surveying pollen loads present on the insect body, insect activity on umbels, nectar and scent composition was studied, and transplantation experiments were performed. Key Results: The populations investigated in this study differed in their nectar and scent profiles and, despite the similar taxonomic composition of insect visitor assemblages, were effectively pollinated by disparate pollinator morphogroups, i.e. flies and beetles. Although this suggested local adaptations to the most effective pollinators, analyses of body pollen loads and behaviour on umbels demonstrated functional equivalency of the visitor morphogroups, which is probably related to the fact that A. sylvestris bears few ovules per flower. The transplantation experiments confirmed that reproductive success was not related to the source of experimental plants and that the insects do not exhibit preferences towards local genotypes. Conclusions: Angelica sylvestris is morphologically well adapted to ecological generalization, and there is little evidence that the surveyed populations represent distinct pollination ecotypes. Most likely, the observed variation in floral characters can be interpreted as 'adaptive wandering'. Specialization in this family seems possible only under very special circumstances, for example when the pollinator community comprises insect visitor groups that clearly differ in their pollination capacity (e.g. due to differences in their functional morphology) and/or have different perceptional biases (e.g. for colour or scent). However, the barrier to the evolution of morphological adaptations resulting in the fine-tuning of the flower towards particular pollinator types may arise from the architectural constraints on the floral bauplan that make umbellifers so uniform in their floral displays and so successful in attracting large numbers of pollinators.


Asunto(s)
Adaptación Biológica , Angelica , Insectos , Polinización , Animales , Odorantes , Néctar de las Plantas
9.
Front Plant Sci ; 9: 1246, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30349545

RESUMEN

Fritillaria is a genus consisting of 130 to 140 species of bulbous plants, native to temperate regions of the northern hemisphere. Generally viewed as an insect pollinated genus with the exception of two North American species, Fritillaria gentneri and F. recurva, which are described as hummingbird-pollinated and the Asian species, F. imperialis, described as passerine-pollinated. These pollinator shifts are possibly the result of adaptive changes to the structure and morphology of the nectary, as well as a change in the nectar concentration and composition. A study was conducted in a target group of 56 Fritillaria species, based on the morphology of their nectaries and nectar composition to assess the significance of pollination mode as well as its predisposition for the evolution of bird pollination. All species studied had nectaries located at their tepal base and produced nectar, but their size, shape, color, and composition all varied. Most fritillaries had hexose-rich nectar, in easily accessible and unprotected nectaries. Scanning electron microscope (SEM) analysis revealed that the surface of the nectaries of most Fritillaria species was flat and clearly distinct from that of the surrounding tissues, which might be regarded as an adaptation for insect-pollination. Nectaries of F. imperialis were considerably larger and had dilute nectar without sucrose, which was produced profusely, thereby fulfilling the criteria characteristic of ornithophilous flowers. The copious nectar of presumed hummingbird-pollinated species was rather balanced and of medium sugar concentration. Their large lanceolate nectaries contrasted sharply with the tessellated background of their tepals. These characters might indicate a mixed pollination system that engages both birds and insects. Floral anatomy and microstructure and nectar composition for Fritillaria species in subgenera Korolkowia and Liliorhiza are studied for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA