Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Phys ; 34(7): 2744-58, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17821982

RESUMEN

This paper reports on a comparative study between the well-established test patterns for daily quality assurance (QA) of monitors of the American Association of Medical Physicists, Task Group 18 (AAPMtg18) and the Deutsches Institut für Normung e.V (DIN), and a newly proposed variable test pattern. A characteristic of the test patterns currently used for the QA of monitors is their static nature: The same test pattern is always used. This enables a learning effect that may bias the results over time. To address this problem we have developed a variable pattern for the quality assurance of monitors (MoniQA) that allows an evaluation of contrast visibility, geometric distortion, resolution, global image quality including uniformity, and artifacts. The test pattern includes randomly generated elements intended to prevent the observer from learning the test. Examples are random characters that have to be discriminated from the background to evaluate the threshold luminance difference and variable positions of different features in the test pattern. The newly proposed test patterns were generated and visualized on different viewing stations with a software tool developed in JAVA. In this study, we validated these patterns against the well-known AAPMtg18 and DIN test patterns on 22 monitors. The results showed that the MoniQA test can indicate the same monitor problems as the other well-known patterns and is significantly quicker to evaluate than the AAPMtg18 test patterns. The MoniQA pattern is a promising alternative for daily quality control of medical viewing stations.


Asunto(s)
Artefactos , Control de Calidad , Humanos , Programas Informáticos
2.
Med Phys ; 30(8): 2234-40, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12945989

RESUMEN

The visibility of micro calcifications is a determining factor for digital mammography. To address the problem of quantification, we developed a procedure to simulate micro calcifications into real mammograms. First, the shapes, sizes and x-ray transmission coefficients of real micro calcifications were derived from the appearance of biopsy specimens in the raw data of magnified, digital images acquired at 27 kVp and Mo/Mo anode-filter combination. This allowed us to create "ideal templates" of micro calcifications. The x-ray transmissions of the real micro calcifications values were expressed in Al-equivalent thickness. This made it possible to recalculate the x-ray transmission characteristics of a particular ideal template for other x-ray beam qualities. Extra corrections for differences in spatial resolution were based on the presampled two-dimensional modulation transfer functions and on the difference in pixel size. Three radiologists compared the appearance of real and simulated micro calcifications in a two-alternative forced choice (2AFC) evaluation. They perceived no differences between real and simulated lesions. Preliminary results show that it is possible to simulate micro calcifications with well defined characteristics that are indistinguishable from real ones. It should be noted, however, that the full potential of the approach has not been proven. In future work, these templates may be useful to evaluate particular aspects of digital mammograms, such as the effects of processing and of viewing conditions on the visibility of micro calcifications.


Asunto(s)
Mamografía/métodos , Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Mama/patología , Enfermedades de la Mama/diagnóstico , Neoplasias de la Mama/diagnóstico , Calcinosis , Humanos , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA