Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39282285

RESUMEN

Homologous recombination (HR) and translesion synthesis (TLS) promote gap-filling DNA synthesis to complete genome replication. One factor involved in both pathways is RAD18, an E3 ubiquitin ligase. Although RAD18's role in promoting TLS through the ubiquitination of PCNA at lysine 164 (K164) is well established, its requirement for HR-based mechanisms is currently less clear. To assess this, we inactivated RAD18 in three human cell lines. Our analyses found that loss of RAD18 in HCT116, but neither hTERT RPE-1 nor DLD1 cell lines, resulted in elevated sister chromatid exchange, gene conversion, and gene targeting, i.e . HCT116 mutants were hyper-recombinogenic (hyper-rec). Loss of RAD18 also impaired TLS activity in HCT116 cells, but unexpectedly, did not reduce clonogenic survival. Interestingly, these phenotypes appear linked to PCNA K164 ubiquitination, as HCT116 PCNA K164R/+ mutants were also hyper-rec and showed reduced TLS activity, consistent with previous studies in rad18 -/- or pcna K164R avian DT40 mutant cells. Importantly, knockdown of UBC9 to prevent PCNA K164 SUMOylation did not affect hyper-recombination, strengthening the link between increased recombination and RAD18-catalyzed PCNA K164 ubiquitination, but not K164 SUMOylation. Taken together, these data suggest that the roles of human RAD18 in directing distinct gap-filling DNA synthesis pathways varies depending on cell type and that these functions are linked to PCNA ubiquitination.

2.
Cell Rep ; 42(12): 113523, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060446

RESUMEN

Ubiquitination of proliferating cell nuclear antigen (PCNA) at lysine 164 (K164) activates DNA damage tolerance pathways. Currently, we lack a comprehensive understanding of how PCNA K164 ubiquitination promotes genome stability. To evaluate this, we generated stable cell lines expressing PCNAK164R from the endogenous PCNA locus. Our data reveal that the inability to ubiquitinate K164 causes perturbations in global DNA replication. Persistent replication stress generates under-replicated regions and is exacerbated by the DNA polymerase inhibitor aphidicolin. We show that these phenotypes are due, in part, to impaired Fanconi anemia group D2 protein (FANCD2)-dependent mitotic DNA synthesis (MiDAS) in PCNAK164R cells. FANCD2 mono-ubiquitination is significantly reduced in PCNAK164R mutants, leading to reduced chromatin association and foci formation, both prerequisites for FANCD2-dependent MiDAS. Furthermore, K164 ubiquitination coordinates direct PCNA/FANCD2 colocalization in mitotic nuclei. Here, we show that PCNA K164 ubiquitination maintains human genome stability by promoting FANCD2-dependent MiDAS to prevent the accumulation of under-replicated DNA.


Asunto(s)
Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Humanos , ADN/metabolismo , Daño del ADN , Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitinación
3.
Cell Rep ; 42(5): 112428, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086407

RESUMEN

Activation of the Fanconi anemia (FA) pathway after treatment with mitomycin C (MMC) is essential for preventing chromosome translocations termed "radials." When replication forks stall at MMC-induced interstrand crosslinks (ICLs), the FA pathway is activated to orchestrate ICL unhooking and repair of the DNA break intermediates. However, in FA-deficient cells, how ICL-associated breaks are resolved in a manner that leads to radials is unclear. Here, we demonstrate that MMC-induced radials are dependent on DNA polymerase theta (POLθ)-mediated alternative end joining (A-EJ). Specifically, we show that radials observed in FANCD2-/- cells are dependent on POLθ and DNA ligase III and occur independently of classical non-homologous end joining. Furthermore, treatment of FANCD2-/- cells with POLθ inhibitors abolishes radials and leads to the accumulation of breaks co-localizing with common fragile sites. Uniformly, these observations implicate A-EJ in radial formation and provide mechanistic insights into the treatment of FA pathway-deficient cancers with POLθ inhibitors.


Asunto(s)
Anemia de Fanconi , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Cromosomas/metabolismo , Reparación del ADN por Unión de Extremidades , Mitomicina , Reparación del ADN
4.
Nat Commun ; 12(1): 1626, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712616

RESUMEN

Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.


Asunto(s)
Alelos , Cardiomiopatías/genética , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/inmunología , Acortamiento del Telómero , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Células Asesinas Naturales
5.
Blood ; 137(3): 336-348, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32735670

RESUMEN

Fanconi anemia (FA) is a hereditary disorder caused by mutations in any 1 of 22 FA genes. The disease is characterized by hypersensitivity to interstrand crosslink (ICL) inducers such as mitomycin C (MMC). In addition to promoting ICL repair, FA proteins such as RAD51, BRCA2, or FANCD2 protect stalled replication forks from nucleolytic degradation during replication stress, which may have a profound impact on FA pathophysiology. Recent studies showed that expression of the putative DNA/RNA helicase SLFN11 in cancer cells correlates with cell death on chemotherapeutic treatment. However, the underlying mechanisms of SLFN11-mediated DNA damage sensitivity remain unclear. Because SLFN11 expression is high in hematopoietic stem cells, we hypothesized that SLFN11 depletion might ameliorate the phenotypes of FA cells. Here we report that SLFN11 knockdown in the FA patient-derived FANCD2-deficient PD20 cell line improved cell survival on treatment with ICL inducers. FANCD2-/-SLFN11-/- HAP1 cells also displayed phenotypic rescue, including reduced levels of MMC-induced chromosome breakage compared with FANCD2-/- cells. Importantly, we found that SLFN11 promotes extensive fork degradation in FANCD2-/- cells. The degradation process is mediated by the nucleases MRE11 or DNA2 and depends on the SLFN11 ATPase activity. This observation was accompanied by an increased RAD51 binding at stalled forks, consistent with the role of RAD51 antagonizing nuclease recruitment and subsequent fork degradation. Suppression of SLFN11 protects nascent DNA tracts even in wild-type cells. We conclude that SLFN11 destabilizes stalled replication forks, and this function may contribute to the attrition of hematopoietic stem cells in FA.


Asunto(s)
Replicación del ADN , Anemia de Fanconi/patología , Proteínas Nucleares/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular , Rotura Cromosómica , Reactivos de Enlaces Cruzados/farmacología , ADN Helicasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteína Homóloga de MRE11/metabolismo , Modelos Biológicos , Mutación/genética , Fenotipo , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/metabolismo
6.
ACS Chem Biol ; 14(12): 2564-2575, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31573793

RESUMEN

DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that block the access of proteins to DNA and interfere with gene expression, replication, and repair. We previously described DPC formation at the N7-guanine position of DNA in human cells treated with antitumor nitrogen mustards and platinum compounds and have shown that DPCs can form endogenously at DNA epigenetic mark 5-formyl-dC. However, insufficient information is available about the effects of these structurally distinct DPCs on transcription. In the present work, we employ a combination of in vitro assays, mass spectrometry, and molecular dynamics simulations to examine the ability of phage T7 RNA polymerase to bypass DPCs conjugated to the C7 position of 7-deaza-dG and the C5 position of dC. These model adducts represent endogenous DPCs induced by exposure to antitumor drugs and formed at epigenetics DNA marks, respectively. Our results reveal that DPCs containing full-length proteins significantly inhibit in vitro transcription by T7 RNA polymerase, while short DNA-peptide cross-links (DpCs) are bypassed. DpCs conjugated to the C7 position of 7-deaza-dG are transcribed with high fidelity, while the same polypeptides attached to the C5 position of dC induce transcription errors. Molecular dynamics simulations of DpCs conjugated either to the C5 atom of dC or the C7 position of 7-deaza-dG on the template strand in T7 RNA polymerase explain how the conjugated peptide can be accommodated in the narrow major groove of the DNA-RNA hybrid and how the modified dC can form a stable mismatch with the incoming ATP in the polymerase active site, allowing for transcriptional mutagenesis.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ADN/metabolismo , Péptidos/metabolismo , Proteínas/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo
7.
ACS Chem Neurosci ; 9(8): 2025-2040, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29400437

RESUMEN

Neuropeptides can have significant effects on neurons and synapses, but among the ∼250 predicted peptides in nematodes, few have been characterized functionally. Here, we report new neuropeptides in the 4 RME nerve ring motorneurons of the nematode Ascaris suum. These GABAergic neurons are involved in three-dimensional head movement. Mass spectrometry (MS) of single dissected RMEs detected a total of 12 neuropeptides (encoded by five genes), nine of which are novel. None of these are expressed in the DI/VI inhibitory GABAergic motorneurons that synapse onto body wall muscle. Using peptide sequences obtained by tandem MS, we cloned the peptide-encoding transcripts and synthesized riboprobes for in situ hybridization (ISH). This complementary technique corroborated the results from single-cell MS, showing that the dissections were not contaminated with adhering tissue from other cells. We also synthesized a multiple antigenic peptide to raise a highly specific antibody against one of the endogenous peptides, which labeled the same cells detected by MS and ISH. Our results show that the RMEs can be divided into two subsets: RMED/V (expressing afp-2, afp-15, Asu-nlp-58, and high levels of afp-16) and RMEL/R (expressing afp-15 and low levels of afp-4 and afp-16). Almost all of these peptides are bioactive in A. suum.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Proteínas del Helminto/metabolismo , Neuronas Motoras/metabolismo , Neuropéptidos/metabolismo , Secuencia de Aminoácidos , Animales , Ascaris suum , Secuencia de Bases , Secuencia Conservada , Femenino , Neuronas GABAérgicas/citología , Proteínas del Helminto/genética , Inmunohistoquímica , Hibridación in Situ , Espectrometría de Masas , Neuronas Motoras/citología , Músculos/efectos de los fármacos , Músculos/metabolismo , Fármacos Neuromusculares/administración & dosificación , Neuropéptidos/administración & dosificación , Neuropéptidos/genética , Alineación de Secuencia , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA