Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Environ Contam Toxicol ; 86(4): 346-362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743081

RESUMEN

It is postulated that below a transcriptomic-based point of departure, adverse effects are unlikely to occur, thereby providing a chemical concentration to use in screening level hazard assessment. The present study extends previous work describing a high-throughput fathead minnow assay that can provide full transcriptomic data after exposure to a test chemical. One-day post-hatch fathead minnows were exposed to ten concentrations of three representatives of four chemical modes of action: organophosphates, ecdysone receptor agonists, plant photosystem II inhibitors, and estrogen receptor agonists for 24 h. Concentration response modeling was performed on whole body gene expression data from each exposure, using measured chemical concentrations when available. Transcriptomic points of departure in larval fathead minnow were lower than apical effect concentrations across fish species but not always lower than toxic effect concentrations in other aquatic taxa like crustaceans and insects. The point of departure was highly dependent on measured chemical concentration which were often lower than the nominal concentration. Differentially expressed genes between chemicals within modes of action were compared and often showed statistically significant overlap. In addition, reproducibility between identical exposures using a positive control chemical (CuSO4) and variability associated with the transcriptomic point of departure using in silico sampling were considered. Results extend a transcriptomic-compatible fathead minnow high-throughput assay for possible use in ecological hazard screening.


Asunto(s)
Cyprinidae , Larva , Transcriptoma , Contaminantes Químicos del Agua , Animales , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Larva/efectos de los fármacos
2.
Curr Res Toxicol ; 4: 100099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36619288

RESUMEN

Concentrations at which global gene expression profiles in cells or animals exposed to a test substance start to differ significantly from those of controls have been proposed as an alternative point of departure for use in screening level hazard assessment. The present study describes pilot testing of a high throughput compatible transcriptomics assay with larval fathead minnows. One day post hatch fathead minnows were exposed to eleven different concentrations of three metals, three selective serotonin reuptake inhibitors, and four neonicotinoid-like compounds for 24 h and concentration response modeling was applied to whole body gene expression data. Transcriptomics-based points of departure (tPODs) were consistently lower than effect concentrations reported in apical endpoint studies in fish. However, larval fathead minnow-based tPODs were not always lower than concentrations reported to elicit apical toxicity in other aquatic organisms like crustaceans or insects. Random in silico subsampling of data from the pilot assays was used to evaluate various assay design and acceptance considerations such as transcriptome coverage, number of replicate individuals to sequence per treatment, and minimum number of differentially expressed genes to produce a reliable tPOD estimate. Results showed a strong association between the total number of genes for which a concentration response relationship could be derived and the overall variability in the resulting tPOD estimates. We conclude that, for our current assay design and analysis pipeline, tPODs based on fewer than 15 differentially expressed genes are likely to be unreliable for screening and that interindividual variability in gene expression profiles appears to be a more significant driver of tPOD variability than sample size alone. Results represent initial steps toward developing high throughput transcriptomics assays for use in ecological hazard screening.

3.
Fishes ; 7(6): 1-22, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36761383

RESUMEN

River water temperatures are increasing globally, particularly in urban systems. In winter, wastewater treatment plant (WWTP) effluent inputs are of particular concern because they increase water temperatures from near freezing to ~7-15 °C. Recent laboratory studies suggest that warm overwinter temperatures impact the reproductive timing of some fishes. To evaluate winter water temperature's influence in the wild, we sampled Johnny Darter Etheostoma nigrum from three urban South Platte River tributaries in Colorado upstream and downstream of WWTP effluent discharge sites. Fish were collected weekly during the spring spawning season of 2021 and reproductive development was determined from histological analysis of the gonads. Winter water temperatures were approximately 5-10 °C greater ~300 m downstream of the WWTP effluent compared to upstream sites, and approximately 3°C warmer at sampling sites ~5000 m downstream of the effluent discharge. Females collected downstream of WWTP effluent experienced accelerated reproductive development compared to upstream by 1-2 weeks. Water quality, including total estrogenicity, and spring water temperatures did not appear to explain varying reproductive development. It appears that small increases in winter water temperature influence the reproductive timing in E. nigrum. Further investigations into how shifts in reproductive timing influence other population dynamics are warranted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA