Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Evol Biol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288276

RESUMEN

Divergent patterns of phenotypic selection on floral traits can arise in response to interactions with functionally distinct pollinators. However, there are a limited number of studies that relate patterns of phenotypic selection on floral traits to variation in local pollinator assemblages in pollination-generalized plant species. We studied phenotypic selection on floral traits of Viscaria vulgaris, a plant that interacts with a broad range of diurnal and nocturnal pollinators, and related divergence in phenotypic selection on floral traits to the expected level of divergence in local pollinator assemblages. We detected phenotypic selection on floral traits involved in the attraction of pollinators and the mechanics of pollen removal and deposition, and demonstrated that floral traits are subject to spatiotemporal variation in the strength and direction of phenotypic selection. We revealed that diurnal and nocturnal pollinators, when considered in isolation, mediated divergent patterns of phenotypic selection on floral traits. Consistent with the Grant-Stebbins model, we observed that divergence in phenotypic selection on floral traits increased with the expected level of divergence in local pollinator assemblages. Thus, generalized plant-pollinator interactions can mediate phenotypic selection on floral traits and distinct local pollinator assemblages can generate a geographic mosaic of divergent patterns of phenotypic selection. We underscore that these outcomes are not exclusive to specialized plant-pollinator interactions and can emerge at a local geographic scale.

2.
Am J Bot ; 110(6): e16128, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36655508

RESUMEN

PREMISE: The role of pollinators in evolutionary floral divergence has spurred substantial effort into measuring pollinator-mediated phenotypic selection and its variation in space and time. For such estimates, the fitness consequences of pollination processes must be separated from other factors affecting fitness. METHODS: We built a fitness function linking phenotypic traits of food-deceptive orchids to female reproductive success by including pollinator visitation and pollen deposition as intermediate performance components and used the fitness function to estimate the strength of pollinator-mediated selection through female reproductive success. We also quantified male performance as pollinarium removal and assessed similarity in trait effects on male and female performance. RESULTS: The proportion of plants visited at least once by an effective pollinator was moderate to high, ranging from 53.7% to 85.1%. Tall, many-flowered plants were often more likely to be visited and pollinated. Given effective pollination, pollen deposition onto stigmas tended to be more likely for taller plants. Pollen deposition further depended on traits affecting the physical fit of pollinators to flowers (flower size, spur length), though the exact relationships varied in time and space. Using the fitness function to assess pollinator-mediated selection through female reproductive success acting on multiple traits, we found that selection varied detectably among taxa after accounting for sampling uncertainty. Across taxa, selection on most traits was stronger on average and more variable when pollination was less reliable. CONCLUSIONS: These results support pollination-related trait-performance-fitness relationships and thus pollinator-mediated selection on traits functionally involved in the pollination process.


Asunto(s)
Orchidaceae , Polinización , Reproducción , Polen , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA