Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Mater Eng ; 35(4): 387-399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968040

RESUMEN

BACKGROUND: Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability. OBJECTIVE: The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering. METHODS: Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture. RESULTS: Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications. CONCLUSION: Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.


Asunto(s)
Aloe , Supervivencia Celular , Gelatina , Mucílago de Planta , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Poliésteres/química , Ingeniería de Tejidos/métodos , Gelatina/química , Andamios del Tejido/química , Supervivencia Celular/efectos de los fármacos , Aloe/química , Mucílago de Planta/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Humanos , Membranas Artificiales , Animales
2.
ACS Omega ; 9(23): 25034-25041, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882075

RESUMEN

In this study, the functionality of an elastomer composite material containing polypyrrole (PPy) as a stress sensor was evaluated. The material was prepared using the swelling method by diffusing the pyrrole monomer into the elastomer before polymerization. To achieve adequate diffusion, organic solvents with affinity for the elastomer were used. The resulting materials were characterized by scanning electron microscopy (SEM), surface electrical resistance, and thermal and mechanical properties for application as a stress sensor. The simultaneous change in electrical resistance and tension stress was measured using a digital multimeter with electrodes connected to the jaws of a universal mechanical testing machine. The influence of stress cycles on the piezoresistivity of the composite materials was investigated. The obtained PPy/NBR composite presented a good combination of electrical conductivity and mechanical properties. The strain at break remained with mild variation after coating with PPy.

3.
ACS Omega ; 9(8): 9526-9535, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434895

RESUMEN

This study addresses the fabrication of extruded films using poly(lactic acid) (PLA) and chitosan, with and without maleic anhydride as a compatibilizing agent, for potential applications in disposable food packaging. These films underwent controlled conditions of UV irradiation, water condensation, and temperature variations in an accelerated weathering chamber. The investigation analyzed the effect of different exposure periods on the structural, morphological, mechanical, and thermal properties of the films. It was observed that PLA films exhibited a lower susceptibility to degradation compared to those containing chitosan. Specifically, the pure PLA film showed an increase in elastic modulus and strength during the initial 144 h of exposure, associated with cross-linking induced by UV radiation. On the other hand, film Q2 composed of PLA, chitosan, and maleic anhydride and Q1 without maleic anhydride experienced a tensile strength loss of over 50% after 244 h of exposure. The Q2 film exhibited greater homogeneity, leading to increased resistance to degradation compared to that of Q1. As the degradation time increased, both the Q1 and Q2 films demonstrated a decline in thermal stability. These films also exhibited alterations in crystallinity attributed to the chemo-crystallization process, along with fluctuations in the glass transition temperature and crystallization, particularly at 288 h.

4.
ACS Omega ; 9(4): 4439-4446, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313549

RESUMEN

This research outlines the fabrication of polymeric membranes and films of poly(lactic acid) (PLA), prepared via electrospinning and extrusion, respectively. These materials were subsequently coated with polyaniline (PANi) by using the in situ chemical polymerization technique. Scanning electron microscopy micrographs revealed that the best coatings were achieved when 3 and 30 min of contact time with the monomeric solution were used for the membrane and film, respectively. Additionally, Fourier transform infrared spectra, thermogravimetric studies, and contact angle measurements demonstrated proper interaction between PLA and PANi. The findings of these studies suggest that PLA membranes and films can serve as suitable substrates for the deposition of PANi, and the composite materials hold potential for use in environmental remediation applications.

5.
Materials (Basel) ; 10(2)2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28772464

RESUMEN

The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films.

6.
Materials (Basel) ; 8(1): 137-148, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28787928

RESUMEN

The use of mixtures of synthetic and natural polymers is a potential option to reduce the pollution by plastic waste. In this work, the method for the chemical modification of chitosan with poly(lactic acid) was developed; then, the preparation of films of blends of polyethylene and chitosan-poly(lactic acid) produced by an extrusion method using polyethylene-graft maleic anhydride as a compatibilizer. It was possible to obtain films with a maximum content of 20 wt% and 30 wt%, chitosan, with and without compatibilizer, respectively. Scanning electron microscope (SEM) analysis showed a homogeneous surface on all films. The addition of the compatibilizer had a significant effect on the mechanical properties of the films, such as an increase in Young's modulus and a decrease in the elongation at break; additionally, the compatibilizer promotes thermal degradation in a single step and gives the film a slight increase in thermal resistance. These results are attributed to an improved interaction in the interface of polyethylene and chitosan-poly(lactic acid), promoted by the compatibilizer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA