RESUMEN
Capsicum baccatum, commonly known as ají, has been reported as a source of variation for many different traits to improve common pepper (C. annuum), one of the most important vegetables in the world. However, strong interspecific hybridization barriers exist between them. A comparative study of two wide hybridization approaches for introgressing C. baccatum genes into C. annuum was performed: i) genetic bridge (GB) using C. chinense and C. frutescens as bridge species; and, ii) direct cross between C. annuum and C. baccatum combined with in vitro embryo rescue (ER). A diverse and representative collection of 18 accessions from four cultivated species of Capsicum was used, including C. annuum (12), C. baccatum (3), C. chinense (2), and C. frutescens (1). More than 5000 crosses were made and over 1000 embryos were rescued in the present study. C. chinense performed as a good bridge species between C. annuum and C. baccatum, with the best results being obtained with the cross combination [C. baccatum (â) × C. chinense (â)] (â) × C. annuum (â), while C. frutescens gave poor results as bridge species due to strong prezygotic and postzygotic barriers. Virus-like-syndrome or dwarfism was observed in F1 hybrids when both C. chinense and C. frutescens were used as female parents. Regarding the ER strategy, the best response was found in C. annuum (â) × C. baccatum (â) crosses. First backcrosses to C. annuum (BC1s) were obtained according to the crossing scheme [C. annuum (â) × C. baccatum (â)] (â) × C. annuum (â) using ER. Advantages and disadvantages of each strategy are discussed in relation to their application to breeding programmes. These results provide breeders with useful practical information for the regular utilization of the C. baccatum gene pool in C. annuum breeding.
Asunto(s)
Capsicum/genética , Quimera/genética , Cruzamientos Genéticos , Genes de Plantas , FitomejoramientoRESUMEN
Common pepper (Capsicum annuum L.) is one of the most important vegetables in the world, and extensive breeding efforts are being made to develop new improved strains of this species. In this regard, in vitro culture of immature embryos may help breeders accelerate breeding cycles and overcome interspecific barriers, among other applications. In this study, we have optimized a protocol for in vitro culture of immature embryos of C. annuum. Levels of indole-3-acetic acid (IAA) and zeatin have been tested to improve the efficiency (germination rates) of this technique in C. annuum embryos at the four main immature stages (i.e. globular, heart, torpedo, and early cotyledonary) from four varietal types of this species (California Wonder, Piquillo, Guindilla, and Bola). The effect of 5-day initial incubation in the dark was also tested on the most efficient hormone formulation. On average, relatively low levels of both IAA and zeatin (0.01 mg L¹ each) (M1) provided the highest germination rates, particularly in the advanced stages (torpedo and cotyledonary). To a lesser extent, the lack of these growth regulators (M0) or high IAA (0.2 mg L¹)/low zeatin (0.01 mg L¹) (M2) combination also had a positive response. On the contrary, high zeatin levels (0.2 mg L¹) produced very low germination rates or callus development (efficiency 0-7 %). Different responses were also found between genotypes. Thus, considering the best media (M0, M1, M2), Bola embryos had the highest rates. M1 plus 5-days of initial dark incubation (M1-D) improved the efficiency rates at all embryo stages, particularly in the earliest (globular) embryos which increased from 3 % to > 20 %.
Asunto(s)
Capsicum/crecimiento & desarrollo , Capsicum/embriología , Genotipo , Semillas/crecimiento & desarrollo , Ácidos Indolacéticos , Reguladores del Crecimiento de las PlantasRESUMEN
Common pepper (Capsicum annuum L.) is one of the most important vegetables in the world, and extensive breeding efforts are being made to develop new improved strains of this species. In this regard, in vitro culture of immature embryos may help breeders accelerate breeding cycles and overcome interspecific barriers, among other applications. In this study, we have optimized a protocol for in vitro culture of immature embryos of C. annuum. Levels of indole-3-acetic acid (IAA) and zeatin have been tested to improve the efficiency (germination rates) of this technique in C. annuum embryos at the four main immature stages (i.e. globular, heart, torpedo, and early cotyledonary) from four varietal types of this species (California Wonder, Piquillo, Guindilla, and Bola). The effect of 5-day initial incubation in the dark was also tested on the most efficient hormone formulation. On average, relatively low levels of both IAA and zeatin (0.01 mg L¹ each) (M1) provided the highest germination rates, particularly in the advanced stages (torpedo and cotyledonary). To a lesser extent, the lack of these growth regulators (M0) or high IAA (0.2 mg L¹)/low zeatin (0.01 mg L¹) (M2) combination also had a positive response. On the contrary, high zeatin levels (0.2 mg L¹) produced very low germination rates or callus development (efficiency 0-7 %). Different responses were also found between genotypes. Thus, considering the best media (M0, M1, M2), Bola embryos had the highest rates. M1 plus 5-days of initial dark incubation (M1-D) improved the efficiency rates at all embryo stages, particularly in the earliest (globular) embryos which increased from 3 % to > 20 %.(AU)
Asunto(s)
Capsicum/embriología , Capsicum/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Genotipo , Ácidos Indolacéticos , Reguladores del Crecimiento de las PlantasRESUMEN
BACKGROUND: Ají (Capsicum baccatum L. var. pendulum) and rocoto (Capsicum pubescens R. & P.) are two species of chile pepper used for millennia in Andean cuisine. The introduction of these relatively unknown Capsicum species to new markets requires an understanding of their flavour-related compounds. Thus both heat level (Scoville method and gas chromatography/mass spectrometry (GC/MS)) and, particularly, aroma (headspace solid phase microextraction and GC/MS/olfactometry) were studied in different accessions of ají and rocoto and a C. chinense control. RESULTS: Ajíes and rocotos are mildly pungent compared with C. chinense (13-352 vs 1605 mg kg(-1) total capsaicinoids). More than 200 volatiles were detected and marked differences in volatile pattern were found between the studied accessions. The powerful fruity/exotic aroma of the C. chinense control is due to esters such as ethyl 4-methylpentanoate, norcarotenoids such as ß-ionone and the hydrocarbon ectocarpene. In contrast, the Andean peppers had more earthy/vegetable/bell pepper-like aromas. Rocotos also exhibited a distinct additional cucumber odour, while one of the ajíes had a distinctive sweet/fruity note. The aroma of C. pubescens fruits is mainly due to substituted 2-methoxypyrazines and lipoxygenase cleavage products (e.g. 2-nonenals, 2,6-nonadienal). 2-Heptanethiol, 3-isobutyl-2-methoxypyrazine and several phenols (e.g. guaiacol) and terpenoids (e.g. α-pinene, 1,8-cineol, linalool) are the basis of C. baccatum aroma, with some 3-methyl-2-butyl esters contributing to fruity notes. CONCLUSION: In this study the compounds responsible for heat and aroma in the Andean peppers C. baccatum and C. pubescens were identified. The results will be of use to inspire future studies aimed at improving the flavour of these species.
Asunto(s)
Capsicum/química , Frutas/química , Odorantes/análisis , Gusto , Compuestos Orgánicos Volátiles/análisis , Capsicum/clasificación , Ésteres/análisis , Femenino , Humanos , Masculino , América del Sur , Especificidad de la EspecieRESUMEN
The carotenoid patterns of fully ripe fruits from 12 Bolivian accessions of the Andean peppers Capsicum baccatum (ají) and C. pubescens (rocoto) were determined by high-performance liquid chromatography (HPLC)-photodiode array detector (PDA)-mass spectrometry (MS). We include 2 California Wonder cultivars as C. annuum controls. A total of 16 carotenoids were identified and differences among species were mostly found at the quantitative level. Among red-fruited genotypes, capsanthin was the main carotenoid in the 3 species (25% to 50% contribution to carotenoid fraction), although ajíes contained the lowest contribution of this carotenoid. In addition, the contribution of capsanthin 5,6-epoxide to total carotenoids in this species was high (11% to 27%) in comparison to rocotos and red C. annuum. Antheraxanthin and violaxanthin were, in general, the next most relevant carotenoids in the red Andean peppers (6.1% to 10.6%). Violaxanthin was the major carotenoid in yellow-/orange-fruited genotypes of the 3 species (37% to 68% total carotenoids), although yellow rocotos were characterized by lower levels (<45%). Cis-violaxanthin, antheraxanthin, and lutein were the next most relevant carotenoids in the yellow/orange Andean peppers (5% to 14%). As a whole, rocotos showed the highest contributions of provitamin A carotenoids to the carotenoid fraction. In terms of nutritional contribution, both ajíes and rocotos provide a remarkable provitamin A activity, with several accessions showing a content in retinol equivalents higher than California Wonder controls. Furthermore, levels of lutein in yellow/orange ajíes and rocotos were clearly higher than California Wonder pepper (≥1000 µg·100/g). Finally, the Andean peppers, particularly red ajíes, can be also considered as a noticeable source of capsanthin, the most powerful antioxidant compound among pepper carotenoids. Practical Application: Capsicum peppers are known for their content in carotenoids, although there is no information about 2 species with Andean origin: ajíes and rocotos. Due to their relevance for the Andean cuisine and increasing importance in ethnic restaurants in Europe, we studied their carotenoid pattern and vitamin A contribution.