Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(2): e4863, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38073129

RESUMEN

During protein evolution, some amino acid substitutions modulate protein function ("tuneability"). In most proteins, the tuneable range is wide and can be sampled by a set of protein variants that each contains multiple amino acid substitutions. In other proteins, the full tuneable range can be accessed by a set of variants that each contains a single substitution. Indeed, in some globular proteins, the full tuneable range can be accessed by the set of site-saturating substitutions at an individual "rheostat" position. However, in proteins with intrinsically disordered regions (IDRs), most functional studies-which would also detect tuneability-used multiple substitutions or small deletions. In disordered transcriptional activation domains (ADs), studies with multiple substitutions led to the "acidic exposure" model, which does not anticipate the existence of rheostat positions. In the few studies that did assess effects of single substitutions on AD function, results were mixed: the ADs of two full-length transcription factors did not show tuneability, whereas a fragment of a third AD was tuneable by single substitutions. In this study, we tested tuneability in the AD of full-length human class II transactivator (CIITA). Sequence analyses and experiments showed that CIITA's AD is an IDR. Functional assays of singly-substituted AD variants showed that CIITA's function was highly tuneable, with outcomes not predicted by the acidic exposure model. Four tested positions showed rheostat behavior for transcriptional activation. Thus, tuneability of different IDRs can vary widely. Future studies are needed to illuminate the biophysical features that govern whether an IDR is tuneable by single substitutions.


Asunto(s)
Proteínas Nucleares , Activación Transcripcional , Humanos , Sustitución de Aminoácidos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Nucleares/metabolismo , Transactivadores/química
2.
Toxins (Basel) ; 15(7)2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37505680

RESUMEN

Protonation of key histidine residues has been long implicated in the acid-mediated cellular action of the diphtheria toxin translocation (T-) domain, responsible for the delivery of the catalytic domain into the cell. Here, we use a combination of computational (constant-pH Molecular Dynamics simulations) and experimental (NMR, circular dichroism, and fluorescence spectroscopy along with the X-ray crystallography) approaches to characterize the initial stages of conformational change happening in solution in the wild-type T-domain and in the H223Q/H257Q double mutant. This replacement suppresses the acid-induced transition, resulting in the retention of a more stable protein structure in solutions at pH 5.5 and, consequently, in reduced membrane-disrupting activity. Here, for the first time, we report the pKa values of the histidine residues of the T-domain, measured by NMR-monitored pH titrations. Most peaks in the histidine side chain spectral region are titrated with pKas ranging from 6.2 to 6.8. However, the two most up-field peaks display little change down to pH 6, which is a limiting pH for this protein in solution at concentrations required for NMR. These peaks are absent in the double mutant, suggesting they belong to H223 and H257. The constant-pH simulations indicate that for the T-domain in solution, the pKa values for histidine residues range from 3.0 to 6.5, with those most difficult to protonate being H251 and H257. Taken together, our experimental and computational data demonstrate that previously suggested cooperative protonation of all six histidines in the T-domain does not occur.


Asunto(s)
Toxina Diftérica , Histidina , Toxina Diftérica/química , Histidina/química , Simulación de Dinámica Molecular , Dominio Catalítico , Transporte de Proteínas , Concentración de Iones de Hidrógeno , Conformación Proteica
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493661

RESUMEN

Regulation of apoptosis is tightly linked with the targeting of numerous Bcl-2 proteins to the mitochondrial outer membrane (MOM), where their activation or inhibition dictates cell death or survival. According to the traditional view of apoptotic regulation, BH3-effector proteins are indispensable for the cytosol-to-MOM targeting and activation of proapoptotic and antiapoptotic members of the Bcl-2 protein family. This view is challenged by recent studies showing that these processes can occur in cells lacking BH3 effectors by as yet to be determined mechanism(s). Here, we exploit a model membrane system that recapitulates key features of MOM to demonstrate that the proapoptotic Bcl-2 protein BAX and antiapoptotic Bcl-xL have an inherent ability to interact with membranes in the absence of BH3 effectors, but only in the presence of cellular concentrations of Mg2+/Ca2+ Under these conditions, BAX and Bcl-xL are selectively targeted to membranes, refolded, and activated in the presence of anionic lipids especially the mitochondrial-specific lipid cardiolipin. These results provide a mechanistic explanation for the mitochondrial targeting and activation of Bcl-2 proteins in cells lacking BH3 effectors. At cytosolic Mg2+ levels, the BH3-independent activation of BAX could provide localized amplification of apoptotic signaling at regions enriched in cardiolipin (e.g., contact sites between MOM and mitochondrial inner membrane). Increases in MOM cardiolipin, as well as cytosolic [Ca2+] during apoptosis could further contribute to its MOM targeting and activity. Meanwhile, the BH3-independent targeting and activation of Bcl-xL to the MOM is expected to counter the action of proapoptotic BAX, thereby preventing premature commitment to apoptosis.


Asunto(s)
Cardiolipinas/farmacología , Permeabilidad de la Membrana Celular , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/efectos de los fármacos , Proteína X Asociada a bcl-2/genética , Proteína bcl-X/genética
4.
Methods Enzymol ; 649: 341-370, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33712192

RESUMEN

Diphtheria toxin is among many bacterial toxins that utilize the endosomal pathway of cellular entry, which is ensured by the bridging of the endosomal membrane by the toxin's translocation (T) domain. Endosomal acidification triggers a series of conformational changes of the T-domain, that take place first in aqueous and subsequently in membranous milieu. These rearrangements ultimately result in establishing membrane-inserted conformation(s) and translocation of the catalytic moiety of the toxin into the cytoplasm. We discuss here the strategy for combining site-selective labeling with various spectroscopic methods to characterize structural and thermodynamic aspects of protonation-dependent conformational switching and membrane insertion of the diphtheria toxin T-domain. Among the discussed methods are FRET, FCS and depth-dependent fluorescence quenching with lipid-attached bromine atoms and spin probes. The membrane-insertion pathway of the T-domain contains multiple intermediates and is governed by staggered pH-dependent transitions involving protonation of histidines and acidic residues. Presented data demonstrate that the lipid bilayer plays an active part in T-domain functioning and that the so-called Open-Channel State does not constitute the translocation pathway, but is likely to be a byproduct of the translocation. The spectroscopic approaches presented here are broadly applicable to many other systems of physiological and biomedical interest for which conformational changes can lead to membrane insertion (e.g., other bacterial toxins, host defense peptides, tumor-targeting pHLIP peptides and members of Bcl-2 family of apoptotic regulators).


Asunto(s)
Toxina Diftérica , Membrana Dobles de Lípidos , Toxina Diftérica/metabolismo , Concentración de Iones de Hidrógeno , Conformación Molecular , Conformación Proteica , Termodinámica
5.
Toxins (Basel) ; 12(11)2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171806

RESUMEN

Diphtheria toxin, an exotoxin secreted by Corynebacterium that causes disease in humans by inhibiting protein synthesis, enters the cell via receptor-mediated endocytosis. The subsequent endosomal acidification triggers a series of conformational changes, resulting in the refolding and membrane insertion of the translocation (T-)domain and ultimately leading to the translocation of the catalytic domain into the cytoplasm. Here, we use X-ray crystallography along with circular dichroism and fluorescence spectroscopy to gain insight into the mechanism of the early stages of pH-dependent conformational transition. For the first time, we present the high-resolution structure of the diphtheria toxin at a mildly acidic pH (5-6) and compare it to the structure at neutral pH (7). We demonstrate that neither catalytic nor receptor-binding domains change their structure upon this acidification, while the T-domain undergoes a conformational change that results in the unfolding of the TH2-3 helices. Surprisingly, the TH1 helix maintains its conformation in the crystal of the full-length toxin even at pH 5. This contrasts with the evidence from the new and previously published data, obtained by spectroscopic measurements and molecular dynamics computer simulations, which indicate the refolding of TH1 upon the acidification of the isolated T-domain. The overall results imply that the membrane interactions of the T-domain are critical in ensuring the proper conformational changes required for the preparation of the diphtheria toxin for the cellular entry.


Asunto(s)
Toxina Diftérica/química , Sitios de Unión , Dominio Catalítico , Dicroismo Circular , Cristalografía por Rayos X , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Desplegamiento Proteico , Espectrometría de Fluorescencia , Relación Estructura-Actividad
6.
J Membr Biol ; 253(4): 373, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32601712

RESUMEN

The original version of the article was published without the Graphic Abstract. Graphic Abstract image of the article is given below.

7.
J Membr Biol ; 253(3): 287-298, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32500172

RESUMEN

Protegrin-1 (PG-1), an 18-residue ß-hairpin stabilized by two disulfide bonds, is a member of a family of powerful antimicrobial peptides which are believed to act through membrane permeabilization. Here we used a combination of experimental and computational approaches to characterize possible structural arrangements of PG-1 in lipid bilayers mimicking bacterial membranes. We have measured the dose-response function of the PG-1-induced leakage of markers of various sizes from vesicles and found it to be consistent with the formation of pores of two different sizes. The first one allows the release of small dyes and occurs at peptide:lipid ratios < 0.006. Above this ratio, larger pores are observed through which the smallest of dextrans FD4 can be released. In parallel with pore formation, we observe a general large-scale destabilization of vesicles which is probably related to complete rupture of some vesicles. The population of vesicles that are completely ruptured depends linearly on PG-1:lipid ratio. Neither pore size, nor vesicle rupture are influenced by the formation of disulfide bonds. Previous computational work on oxidized protegrin is complemented here by all-atom MD simulations of PG-1 with reduced disulfide bonds both in solution (monomer) and in a bilayer (dimer and octamer). The simulations provide molecular insights into the influence of disulfide bonds on peptide conformation, aggregation, and oligomeric structure.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Membrana Dobles de Lípidos/química , Algoritmos , Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Relación Estructura-Actividad
8.
Cells ; 9(3)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111007

RESUMEN

The inhibition of mitochondrial permeabilization by the anti-apoptotic protein Bcl-xL is crucial for cell survival and homeostasis. Its inhibitory role requires the partitioning of Bcl-xL to the mitochondrial outer membrane from an inactive state in the cytosol, leading to its extensive refolding. The molecular mechanisms behind these events and the resulting conformations in the bilayer are unclear, and different models have been proposed to explain them. In the most recently proposed non-canonical model, the active form of Bcl-xL employs its N-terminal BH4 helix to bind and block its pro-apoptotic target. Here, we used a combination of various spectroscopic techniques to study the release of the BH4 helix (α1) during the membrane insertion of Bcl-xL. This refolding was characterized by a gradual increase in helicity due to the lipid-dependent partitioning-coupled folding and formation of new helix αX (presumably in the originally disordered loop between helices α1 and α2). Notably, a comparison of various fluorescence and circular dichroism measurements suggested the presence of multiple Bcl-xL conformations in the bilayer. This conclusion was explicitly confirmed by single-molecule measurements of FÓ§rster Resonance Energy Transfer from Alexa-Fluor-488-labeled Bcl-xL D189C to a mCherry fluorescent protein attached at the N-terminus. These measurements clearly indicated that the refolding of Bcl-xL in the bilayer is not a two-state transition and involves multiple membranous intermediates of variable compactness.


Asunto(s)
Apoptosis , Proteína bcl-X/química , Membrana Celular/metabolismo , Dicroismo Circular , Transferencia Resonante de Energía de Fluorescencia , Lípidos , Conformación Proteica , Imagen Individual de Molécula
9.
Biochim Biophys Acta Proteins Proteom ; 1867(7-8): 691-700, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31004798

RESUMEN

Bcl-xL is a member of the Bcl-2 family of apoptotic regulators, responsible for inhibiting the permeabilization of the mitochondrial outer membrane, and a promising anti-cancer target. Bcl-xL exists in the following conformations, each believed to play a role in the inhibition of apoptosis: (a) a soluble folded conformation, (b) a membrane-anchored (by its C-terminal α8 helix) form, which retains the same fold as in solution and (c) refolded membrane-inserted conformations, for which no structural data are available. Previous studies established that in the cell Bcl-xL exists in a dynamic equilibrium between soluble and membranous states, however, no direct evidence exists in support of either anchored or inserted conformation of the membranous state in vivo. In this in vitro study, we employed a combination of fluorescence and EPR spectroscopy to characterize structural features of the bilayer-inserted conformation of Bcl-xL and the lipid modulation of its membrane insertion transition. Our results indicate that the core hydrophobic helix α6 inserts into the bilayer without adopting a transmembrane orientation. This insertion disrupts the packing of Bcl-xL and releases the regulatory N-terminal BH4 domain (α1) from the rest of the protein structure. Our data demonstrate that both insertion and refolding of Bcl-xL are modulated by lipid composition, which brings the apparent pKa of insertion to the threshold of physiological pH. We hypothesize that conformational rearrangements associated with the bilayer insertion of Bcl-xL result in its switching to a so-called non-canonical mode of apoptotic inhibition. Presented results suggest that the alteration in lipid composition before and during apoptosis can serve as an additional factor regulating the permeabilization of the mitochondrial outer membrane.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Proteína bcl-X/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Dominios Proteicos , Proteína bcl-X/metabolismo
10.
J Membr Biol ; 251(3): 379-391, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29550876

RESUMEN

Dynamic disorder of the lipid bilayer presents a challenge for establishing structure-function relationships in membranous systems. The resulting structural heterogeneity is especially evident for peripheral and spontaneously inserting membrane proteins, which are not constrained by the well-defined transmembrane topology and exert their action in the context of intimate interaction with lipids. Here, we propose a concerted approach combining depth-dependent fluorescence quenching with Molecular Dynamics simulation to decipher dynamic interactions of membrane proteins with the lipid bilayers. We apply this approach to characterize membrane-mediated action of the diphtheria toxin translocation domain. First, we use a combination of the steady-state and time-resolved fluorescence spectroscopy to characterize bilayer penetration of the NBD probe selectively attached to different sites of the protein into membranes containing lipid-attached nitroxyl quenching groups. The constructed quenching profiles are analyzed with the Distribution Analysis methodology allowing for accurate determination of transverse distribution of the probe. The results obtained for 12 NBD-labeled single-Cys mutants are consistent with the so-called Open-Channel topology model. The experimentally determined quenching profiles for labeling sites corresponding to L350, N373, and P378 were used as initial constraints for positioning TH8-9 hairpin into the lipid bilayer for Molecular Dynamics simulation. Finally, we used alchemical free energy calculations to characterize protonation of E362 in soluble translocation domain and membrane-inserted conformation of its TH8-9 fragment. Our results indicate that membrane partitioning of the neutral E362 is more favorable energetically (by ~ 6 kcal/mol), but causes stronger perturbation of the bilayer, than the charged E362.


Asunto(s)
Toxina Diftérica/química , Toxina Diftérica/metabolismo , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fluorescencia , Conformación Molecular , Simulación de Dinámica Molecular , Espectrometría de Fluorescencia
11.
Toxins (Basel) ; 9(10)2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28937631

RESUMEN

Cellular entry of diphtheria toxin is a multistage process involving receptor targeting, endocytosis, and translocation of the catalytic domain across the endosomal membrane into the cytosol. The latter is ensured by the translocation (T) domain of the toxin, capable of undergoing conformational refolding and membrane insertion in response to the acidification of the endosomal environment. While numerous now classical studies have demonstrated the formation of an ion-conducting conformation-the Open-Channel State (OCS)-as the final step of the refolding pathway, it remains unclear whether this channel constitutes an in vivo translocation pathway or is a byproduct of the translocation. To address this question, we measure functional activity of known OCS-blocking mutants with H-to-Q replacements of C-terminal histidines of the T-domain. We also test the ability of these mutants to translocate their own N-terminus across lipid bilayers of model vesicles. The results of both experiments indicate that translocation activity does not correlate with previously published OCS activity. Finally, we determined the topology of TH5 helix in membrane-inserted T-domain using W281 fluorescence and its depth-dependent quenching by brominated lipids. Our results indicate that while TH5 becomes a transbilayer helix in a wild-type protein, it fails to insert in the case of the OCS-blocking mutant H322Q. We conclude that the formation of the OCS is not necessary for the functional translocation by the T-domain, at least in the histidine-replacement mutants, suggesting that the OCS is unlikely to constitute a translocation pathway for the cellular entry of diphtheria toxin in vivo.


Asunto(s)
Toxina Diftérica/química , Membranas Intracelulares/química , Dominio Catalítico , Endocitosis , Histidina/química , Proteínas Mutantes/química , Conformación Proteica
12.
Data Brief ; 12: 213-221, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28459092

RESUMEN

This article supplies raw data related to a research article entitled "Joint refinement of FRET measurements using spectroscopic and computational tools" (Kyrychenko et al., 2017) [1], in which we demonstrate the use of molecular dynamics simulations to estimate FRET orientational factors in a benchmark donor-linker-acceptor system of enhanced cyan (ECFP) and enhanced yellow (EYFP) fluorescent proteins. This can improve the recalculation of donor-acceptor distance information from single-molecule FRET measurements.

13.
Anal Biochem ; 522: 1-9, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28108168

RESUMEN

The variability of the orientation factor is a long-standing challenge in converting FRET efficiency measurements into donor-acceptor distances. We propose the use of molecular dynamics (MD) simulations to characterize orientation distributions and thus improve the accuracy of distance measurements. Here, we test this approach by comparing experimental and simulated FRET efficiencies for a model donor-acceptor pair of enhanced cyan and enhanced yellow FPs connected by a flexible linker. Several spectroscopic techniques were used to characterize FRET in solution. In addition, a series of atomistic MD simulations of a total length of 1.5 µs were carried out to calculate the distances and the orientation factor in the FRET-pair. The resulting MD-based and experimentally measured FRET efficiency histograms coincided with each other, allowing for direct comparison of distance distributions. Despite the fact that the calculated average orientation factor was close to 2/3, the application of the average κ2 to the entire histogram of FRET efficiencies resulted in a substantial artificial broadening of the calculated distribution of apparent donor-acceptor distances. By combining single pair-FRET measurements with computational tools, we demonstrate that accounting for the donor and acceptor orientation heterogeneity is critical for accurate representation of the donor-acceptor distance distribution from FRET measurements.


Asunto(s)
Simulación por Computador , Transferencia Resonante de Energía de Fluorescencia/métodos , Modelos Químicos
14.
Biophys J ; 111(9): 1946-1953, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806276

RESUMEN

Protein-side-chain protonation, coupled to conformational rearrangements, is one way of regulating physiological function caused by changes in protein environment. Specifically, protonation of histidine residues has been implicated in pH-dependent conformational switching in several systems, including the diphtheria toxin translocation (T) domain, which is responsible for the toxin's cellular entry via the endosomal pathway. Our previous studies a) identified protonation of H257 as a major component of the T domain's conformational switch and b) suggested the possibility of a neighboring H223 acting as a modulator, affecting the protonation of H257 and preventing premature conformational changes outside the endosome. To verify this "safety-latch" hypothesis, we report here the pH-dependent folding and membrane interactions of the T domain of the wild-type and that of the H223Q mutant, which lacks the latch. Thermal unfolding of the T domain, measured by circular dichroism, revealed that the reduction in the transition temperature for helical unfolding for an H223Q mutant starts at less acidic conditions (pH <7.5) relative to the wild-type protein (pH <6.5). Hydrogen-deuterium-exchange mass spectrometry demonstrates that the H223Q replacement results in a loss of stability of the amphipathic helices TH1-3 and the hydrophobic core helix TH8 at pH 6.5. That this destabilization occurs in solution correlates well with the pH-range shift for the onset of the membrane permeabilization and translocation activity of the T domain, confirming our initial hypothesis that H223 protonation guards against early refolding. Taken together, these results demonstrate that histidine protonation can fine-tune pH-dependent switching in physiologically relevant systems.


Asunto(s)
Toxina Diftérica/química , Toxina Diftérica/metabolismo , Toxina Diftérica/genética , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos , Termodinámica
15.
Toxins (Basel) ; 7(4): 1303-23, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25875295

RESUMEN

The pH-triggered membrane insertion of the diphtheria toxin translocation domain (T domain) results in transferring the catalytic domain into the cytosol, which is relevant to potential biomedical applications as a cargo-delivery system. Protonation of residues is suggested to play a key role in the process, and residues E349, D352 and E362 are of particular interest because of their location within the membrane insertion unit TH8-TH9. We have used various spectroscopic, computational and functional assays to characterize the properties of the T domain carrying the double mutation E349Q/D352N or the single mutation E362Q. Vesicle leakage measurements indicate that both mutants interact with the membrane under less acidic conditions than the wild-type. Thermal unfolding and fluorescence measurements, complemented with molecular dynamics simulations, suggest that the mutant E362Q is more susceptible to acid destabilization because of disruption of native intramolecular contacts. Fluorescence experiments show that removal of the charge in E362Q, and not in E349Q/D352N, is important for insertion of TH8-TH9. Both mutants adopt a final functional state upon further acidification. We conclude that these acidic residues are involved in the pH-dependent action of the T domain, and their replacements can be used for fine tuning the pH range of membrane interactions.


Asunto(s)
Toxina Diftérica/química , Toxina Diftérica/genética , Animales , Células CHO , Membrana Celular , Dicroismo Circular , Cricetinae , Cricetulus , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Mutación , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia
16.
J Membr Biol ; 248(3): 383-94, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25281329

RESUMEN

The diphtheria toxin translocation (T) domain inserts into the endosomal membrane in response to the endosomal acidification and enables the delivery of the catalytic domain into the cell. The insertion pathway consists of a series of conformational changes that occur in solution and in the membrane and leads to the conversion of a water-soluble state into a transmembrane state. In this work, we utilize various biophysical techniques to characterize the insertion pathway from the thermodynamic perspective. Thermal and chemical unfolding measured by differential scanning calorimetry, circular dichroism, and tryptophan fluorescence reveal that the free energy of unfolding of the T-domain at neutral and mildly acidic pH differ by 3-5 kcal/mol, depending on the experimental conditions. Fluorescence correlation spectroscopy measurements show that the free energy change from the membrane-competent state to the interfacial state is approximately -8 kcal/mol and is pH-independent, while that from the membrane-competent state to the transmembrane state ranges between -9.5 and -12 kcal/mol, depending on the membrane lipid composition and pH. Finally, the thermodynamics of transmembrane insertion of individual helices was tested using an in vitro assay that measures the translocon-assisted integration of test sequences into the microsomal membrane. These experiments suggest that even the most hydrophobic helix TH8 has only a small favorable free energy of insertion. The free energy for the insertion of the consensus insertion unit TH8-TH9 is slightly more favorable, yet less favorable than that measured for the entire protein, suggesting a cooperative effect for the membrane insertion of the helices of the T-domain.


Asunto(s)
Toxina Diftérica/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Replegamiento Proteico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Termodinámica
17.
Biochim Biophys Acta ; 1848(1 Pt A): 35-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25291602

RESUMEN

The function of diphtheria toxin translocation (T) domain is to transfer the catalytic domain across the endosomal membrane upon acidification. The goal of this study was to develop and apply an in vitro functional assay for T domain activity, suitable for investigation of structure-function relationships of translocation across lipid bilayers of various compositions. Traditionally, T domain activity in vitro is estimated by measuring either conductance in planar lipid bilayers or the release of fluorescent markers from lipid vesicles. While an in vivo cell death assay is the most relevant to physiological function, it cannot be applied to studying the effects of pH or membrane lipid composition on translocation. Here we suggest an assay based on cleavage of the N-terminal part of T domain upon translocation into protease-loaded vesicles. A series of control experiment was used to confirm that cleavage occurs inside the vesicle and not as the result of vesicle disruption. Translocation of the N-terminus of the T domain is shown to require the presence of a critical fraction of anionic lipids, which is consistent with our previous biophysical measurements of insertion. Application of the proposed assay to a series of T domain mutants correlated well with the results of cytotoxicity assay.


Asunto(s)
Toxina Diftérica/metabolismo , Membranas Intracelulares/metabolismo , Membrana Dobles de Lípidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Permeabilidad de la Membrana Celular , Toxina Diftérica/química , Toxina Diftérica/genética , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Membranas Intracelulares/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteolisis , Trombina/química , Trombina/metabolismo , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
18.
J Membr Biol ; 248(3): 583-94, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25107303

RESUMEN

Determination of the depth of membrane penetration provides important information for studies of membrane protein folding and protein-lipid interactions. Here, we use a combination of molecular dynamics (MD) simulations and depth-dependent fluorescence quenching to calibrate the methodology for extracting quantitative information on membrane penetration. In order to investigate the immersion depth of the fluorescent label in lipid bilayer, we studied 7-nitrobenz-2-oxa-1,3-diazole (NBD) attached to the lipid headgroup in NBD-PE incorporated into POPC bilayer. The immersion depth of NBD was estimated by measuring steady-state and time-resolved fluorescence quenching with spin-labeled lipids co-incorporated into lipid vesicles. Six different spin-labeled lipids were utilized: one with headgroup-attached Tempo probe (Tempo-PC) and five with acyl chain-labeled n-Doxyl moieties (n-Doxyl-PC where n is a chain labeling position equal to 5, 7, 10, 12, and 14, respectively). The Stern-Volmer analysis revealed that NBD quenching in membranes occurs by both static and dynamic collisional quenching processes. Using the methodology of Distribution Analysis, the immersion depth and the apparent half-width of the transversal distributions of the NBD moiety were estimated to be 14.7 and 6.7 Å, respectively, from the bilayer center. This position is independently validated by atomistic MD simulations of NBD-PE lipids in a POPC bilayer (14.4 Å). In addition, we demonstrate that MD simulations of the transverse overlap integrals between dye and quencher distributions can be used for proper analysis of the depth-dependent quenching profile. Finally, we illustrate the application of this methodology by determining membrane penetration of site selectively labeled mutants of diphtheria toxin T-domain.


Asunto(s)
Membrana Dobles de Lípidos/química , Calibración , Permeabilidad de la Membrana Celular , Péptidos de Penetración Celular/química , Toxina Diftérica/química , Simulación de Dinámica Molecular , Oxadiazoles/química , Fosfatidilcolinas/química , Espectrometría de Fluorescencia
19.
Biochemistry ; 53(43): 6849-56, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25290210

RESUMEN

The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.


Asunto(s)
Toxina Diftérica/química , Multimerización de Proteína , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
20.
Biochemistry ; 52(45): 7901-9, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24134052

RESUMEN

The diphtheria toxin translocation domain (T-domain) and the apoptotic repressor Bcl-xL are membrane proteins that adopt their final topology by switching folds from a water-soluble to a membrane-inserted state. While the exact molecular mechanisms of this transition are not clearly understood in either case, the similarity in the structures of soluble states of the T-domain and Bcl-xL led to the suggestion that their membrane insertion pathways will be similar, as well. Previously, we have applied an array of spectroscopic methods to characterize the pH-triggered refolding and membrane insertion of the diphtheria toxin T-domain. Here, we use the same set of methods to describe the membrane insertion pathway of Bcl-xL, which allows us to make a direct comparison between both systems with respect to the thermodynamic stability in solution, pH-dependent membrane association, and transmembrane insertion. Thermal denaturation measured by circular dichroism indicates that, unlike the T-domain, Bcl-xL does not undergo a pH-dependent destabilization of the structure. Förster resonance energy transfer measurements demonstrate that Bcl-xL undergoes reversible membrane association modulated by the presence of anionic lipids, suggesting that formation of the membrane-competent form occurs close to the membrane interface. Membrane insertion of the main hydrophobic helical hairpin of Bcl-xL, α5-α6, was studied by site-selective attachment of environment-sensitive dye NBD. In contrast to the insertion of the corresponding TH8-TH9 hairpin into the T-domain, insertion of α5-α6 was found not to depend strongly on the presence of anionic lipids. Taken together, our results indicate that while Bcl-xL and the T-domain share structural similarities, their modes of conformational switching and membrane insertion pathways are distinctly different.


Asunto(s)
Toxina Diftérica/metabolismo , Proteína bcl-X/metabolismo , Línea Celular Tumoral , Dicroismo Circular , Toxina Diftérica/química , Humanos , Concentración de Iones de Hidrógeno , Estabilidad Proteica , Transporte de Proteínas , Termodinámica , Proteína bcl-X/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA