Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 7(10): 11088-11096, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38808309

RESUMEN

The development of nanoribbon-like structures is an effective strategy to harness the potential benefits of graphenic materials due to their excellent electrical properties, advantageous edge sites, rapid electron transport, and large specific area. Herein, parallel and connected magnetic nanostructured nanoribbons are obtained through the synthesis of reduced graphene oxide (rGO) using NiCl2 as a precursor with potential applications in nascent electronic and magnetic devices. Several analytical techniques have been used for the thorough characterization of the modified surfaces. Atomic force microscopy (AFM) shows the characteristic topographical features of the nanoribbons. While X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy provided information on the chemical state of Ni and graphene-like structures, magnetic force microscopy (MFM) and scanning Kelvin probe microscopy (SKPFM) confirmed the preferential concentration of Ni onto rGO nanoribbons. These results indicate that the synthesized material shows 1D ordering of nickel nanoparticles (NiNPs)-decorating tiny rGO flakes into thin threads and the subsequent 2D arrangement of the latter into parallel ribbons following the topography of the HOPG basal plane.

2.
Sensors (Basel) ; 22(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36298181

RESUMEN

This study experimentally and numerically validates the commonly employed technique of laser-induced heating of a material in optical temperature sensing studies. Furthermore, the Er3+-doped glass microspheres studied in this work can be employed as remote optical temperature sensors. Laser-induced self-heating is a useful technique commonly employed in optical temperature sensing research when two temperature-dependent parameters can be correlated, such as in fluorescence intensity ratio vs. interferometric calibration, allowing straightforward sensor characterization. A frequent assumption in such experiments is that thermal homogeneity within the sensor volume, that is, a sound hypothesis when dealing with small volume to surface area ratio devices such as microresonators, but has never been validated. In order to address this issue, we performed a series of experiments and simulations on a microsphere supporting whispering gallery mode resonances, laser heating it at ambient pressure and medium vacuum while tracking the resonance wavelength shift and comparing it to the shift rate observed in a thermal bath. The simulations were done starting only from the material properties of the bulk glass to simulate the physical phenomena of laser heating and resonance of the microsphere glass. Despite the simplicity of the model, both measurements and simulations are in good agreement with a highly homogeneous temperature within the resonator, thus validating the laser heating technique.

3.
Micromachines (Basel) ; 10(7)2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31284508

RESUMEN

This paper provides a generic way to fabricate a high-index contrast tapered waveguide platform based on dielectric crystal bonded on glass for sensing applications. As a specific example, KLu(WO4)2 crystal on a glass platform is made by means of a three-technique combination. The methodology used is on-chip bonding, taper cutting with an ultra-precise dicing saw machine and inductively coupled plasma-reactive ion etching (ICP-RIE) as a post-processing step. The high quality tapered waveguides obtained show low surface roughness (25 nm at the top of the taper region), exhibiting propagation losses estimated to be about 3 dB/cm at 3.5 m wavelength. A proof-of-concept with crystal-on-glass tapered waveguides was realized and used for chemical sensing.

4.
Opt Express ; 27(6): 8745-8755, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052687

RESUMEN

We report the generation of mid-infrared (~2 µm) high repetition rate (MHz) sub-100 ns pulses in buried thulium-doped monoclinic double tungstate crystalline waveguide lasers using two-dimensional saturable absorber materials, graphene and MoS2. The waveguide (propagation losses of ~1 dB/cm) was micro-fabricated by means of ultrafast femtosecond laser writing. In the continuous-wave regime, the waveguide laser generated 247 mW at 1849.6 nm with a slope efficiency of 48.7%. The laser operated at the fundamental transverse mode with a linearly polarized output. With graphene as a saturable absorber, the pulse characteristics were 88 ns / 18 nJ (duration / energy) at a repetition rate of 1.39 MHz. Even shorter pulses of 66 ns were achieved with MoS2. Graphene and MoS2 are therefore promising for high repetition rate nanosecond Q-switched infrared waveguide lasers.

5.
Opt Lett ; 44(7): 1738-1741, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30933137

RESUMEN

We report on efficient laser operation of the first holmium monoclinic double tungstate waveguide laser fabricated by femtosecond direct laser writing. A depressed-index buried channel waveguide with a 60 µm diameter circular cladding was inscribed in 5 at.% Ho3+:KGd(WO4)2. It was characterized by confocal microscopy and µ-Raman and µ-luminescence spectroscopy, indicating well-preserved crystallinity of its core. Pumped by a thulium bulk laser, the holmium waveguide laser generated 212 mW at 2055 nm with a slope efficiency of 67.2%. The waveguide propagation losses were 0.94±0.2 dB/cm.

6.
Front Chem ; 7: 88, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30859096

RESUMEN

This study analyzes the mapping of temperature distribution generated by graphene in a glass slide cover after illumination at 808 nm with a good thermal resolution. For this purpose, Er,Yb:NaYF4 nanoparticles prepared by a microwave-assisted solvothermal method were used as upconversion luminescent nanothermometers. By tuning the basic parameters of the synthesis procedure, such as the time and temperature of reaction and the concentration of ethanol and water, we were able to control the size and the crystalline phase of the nanoparticles, and to have the right conditions to obtain 100% of the ß hexagonal phase, the most efficient spectroscopically. We observed that the thermal sensitivity that can be achieved with these particles is a function of the size of the nanoparticles and the crystalline phase in which they crystallize. We believe that, with suitable changes, these nanoparticles might be used in the future to map temperature gradients in living cells while maintaining a good thermal resolution.

7.
Opt Express ; 26(23): 30826-30836, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30469975

RESUMEN

We report on the first erbium (Er3+) doped double tungstate waveguide laser. As a gain material, we studied a monoclinic Er3+:KLu(WO4)2 crystal. A depressed-index buried channel waveguide formed by a 60 µm-diameter circular cladding was fabricated by 3D femtosecond direct laser writing. The waveguide was characterized by confocal laser microscopy, µ-Raman and µ-luminescence mapping, confirming that the crystallinity of the core is preserved. The waveguide laser, diode pumped at 981 nm, generated 8.9 mW at 1533.6 nm with a slope efficiency of 20.9% in the continuous-wave regime. The laser polarization was linear (E || Nm). The laser threshold was at 93 mW of absorbed pump power.

8.
Sci Rep ; 7(1): 3677, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28623262

RESUMEN

Metastatic cancer patients require a continuous monitoring during the sequential treatment cycles to carefully evaluate their disease evolution. Repetition of biopsies is very invasive and not always feasible. Herein, we design and demonstrate a 3D-flow focusing microfluidic device, where all optics are integrated into the chip, for the fluorescence quantification of CTCs in real samples. To test the chip performance, two cell membrane targets, the epithelial cell adhesion molecule, EpCAM, and the receptor tyrosine-protein kinase, HER2, are selected. The efficiency of the platform is demonstrated on cell lines and in a variety of healthy donors and metastatic-breast cancer patients.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Células Neoplásicas Circulantes/patología , Adulto , Anciano , Biomarcadores , Biomarcadores de Tumor , Neoplasias de la Mama/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Imagen por Resonancia Magnética/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Persona de Mediana Edad , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo
9.
Opt Lett ; 42(6): 1169-1172, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28295075

RESUMEN

Depressed-index channel waveguides with a circular and photonic crystal cladding structures are prepared in a bulk monoclinic Tm:KLu(WO4)2 crystal by 3D direct femtosecond laser writing. The channel waveguide structures are characterized and laser operation is achieved using external mirrors. In the continuous-wave mode, the maximum output power of 46 mW is achieved at 1912 nm corresponding to a slope efficiency of 15.2% and a laser threshold of only 21 mW. Passive Q-switching of a waveguide with a circular cladding is realized using single-walled carbon nanotubes. Stable 7 nJ/50 ns pulses are achieved at a repetition rate of 1.48 MHz. This first demonstration of ∼2 µm fs-laser-written waveguide lasers based on monoclinic double tungstates is promising for further lasers of this type doped with Tm3+ and Ho3+ ions.

10.
Opt Express ; 25(4): 3722-3736, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241584

RESUMEN

We report mid-infrared LiNbO3 depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications. Using a heuristic modeling-testing iteration design approach which takes into account cladding induced stress-optic index changes, the fabricated cladding microstructure provides low-loss single mode operation for the mid-IR for both orthogonal polarizations. The dependence of the localized refractive index changes within the cladding microstructure with post-fabrication thermal annealing processes was also investigated, revealing its complex dependence of the laser induced refractive index changes on laser fabrication conditions and thermal post-processing steps. The waveguide modes properties and their dependence on thermal post-processing were numerically modeled and fitted to the experimental values by systematically varying three fundamental parameters of this type of waveguides: depressed refractive index values at sub-micron laser-written tracks, track size changes, and piezo-optic induced refractive index changes.

11.
Opt Lett ; 41(11): 2493-6, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27244397

RESUMEN

A novel fiber-coupled indium tin oxide (ITO) coated glass slide sensor for performing surface plasmon polariton chemical monitoring in the ∼3.5 µm mid-infrared (IR) range is reported. Efficient mid-IR fiber coupling is achieved with 3D laser written waveguides, and the coupling of glass waveguide modes to ITO surface plasmon polaritons (SPPs) is driven by the varying phase matching conditions of different aqueous analytes across the anomalous dispersion range determined by their molecular fingerprints. By means of using both a mid-IR fiber supercontinuum source and a diode laser, the excitation of SPPs is demonstrated. The sensor sensitivity is tested by discriminating CH from OH features of ethanol in water solutions, demonstrating an instrumental ethanol limit of detection of 0.02% in a wide concentration range of at least 0%-50%. The efficient optical monitoring of mid-IR SPPs in smart glass could have a broad range of applications in biological and chemical sensing.

12.
Opt Express ; 24(7): 7777-91, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27137062

RESUMEN

Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.

13.
Opt Lett ; 40(24): 5818-21, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26670520

RESUMEN

We report on the direct laser fabrication of step-index waveguides in fused silica substrates for operation in the 3.5 µm mid-infrared wavelength range. We demonstrate core-cladding index contrasts of 0.7% at 3.39 µm and propagation losses of 1.3 (6.5) dB/cm at 3.39 (3.68) µm, close to the intrinsic losses of the glass. We also report on the existence of three different laser modified SiO2 glass volumes, their different micro-Raman spectra, and their different temperature-dependent populations of color centers, tentatively clarifying the SiO2 lattice changes that are related to the large index changes.

14.
Opt Express ; 23(12): 15343-55, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26193514

RESUMEN

We report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.5x10(-3) for TE polarized light, while maintaining the negative index change of around -1x10(-2) for TM polarized light. In order to evaluate the local refractive index changes we have followed a multistep procedure: We have first characterized the waveguide cross-sections by means of Raman micro-mapping to access the lattice micro-modifications and their spatial extent. Secondly we have modeled the waveguides following the modified region sizes obtained by micro-Raman with finite element method software to obtain a best match between the experimental propagation modes and the simulated ones. Furthermore we also report the fabrication of Mach-Zehnder structures and the evaluation of propagation losses.

15.
Lab Chip ; 12(13): 2414-20, 2012 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-22538525

RESUMEN

Quantum dot thermal imaging has been used to analyse the chromatic dependence of laser-induced thermal effects inside optofluidic devices with monolithically integrated near-infrared waveguides. We demonstrate how microchannel optical local heating plays an important role, which cannot be disregarded within the context of on-chip optical cell manipulation. We also report on the thermal imaging of locally illuminated microchannels when filled with nano-heating particles such as carbon nanotubes.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Puntos Cuánticos , Compuestos de Cadmio/química , Rayos Láser , Técnicas Analíticas Microfluídicas/métodos , Nanotubos de Carbono/química , Dispositivos Ópticos , Semiconductores , Telurio/química , Temperatura
16.
Opt Lett ; 37(3): 392-4, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22297363

RESUMEN

We report the fabrication of single-mode buried channel waveguides for the whole mid-IR transparency range of chalcogenide sulphide glasses (λ ≤ 11 µm), by means of direct laser writing. We have explored the potential of this technology by fabricating a prototype three-dimensional three-beam combiner for future application in stellar interferometry that delivers a monochromatic interference visibility of 99.89% at 10.6 µm and an ultrahigh bandwidth (3-11 µm) interference visibility of 21.3%. These results demonstrate that it is possible to harness the whole transparency range offered by chalcogenide glasses on a single on-chip instrument by means of direct laser writing, a finding that may be of key significance in future technologies such as astrophotonics and biochemical sensing.


Asunto(s)
Calcógenos/química , Vidrio/química , Rayos Infrarrojos , Fotones , Sulfuros/química
17.
Opt Lett ; 37(16): 3339-41, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23381250

RESUMEN

We report near-infrared (IR) to mid-IR (up to 3.4 µm wavelength) multimode waveguiding in deep buried channel waveguides fabricated inside rare-earth ion-doped ceramic YAG for the first time to our knowledge. Waveguide laser operation at around 2 µm wavelength with multi- or single-transverse modes is also preliminarily demonstrated from these waveguides.

18.
Opt Express ; 19(18): 17820-33, 2011 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-21935150

RESUMEN

We report the ultrafast fabrication of high-contrast step-index channel waveguides in Nd(3+):YCa(4)O(BO(3))(3) borate laser crystals by means of 3D direct laser writing. Guiding up to 3.4 µm wavelength is demonstrated for the first time in a laser written crystalline waveguide. Modeling the measured fundamental modes at the wavelengths of 1.9 µm and 3.4 µm allowed us to estimate the high laser-induced refractive index increments (index contrasts) to be 0.010 (0.59%), and 0.005 (0.29%), respectively. Confocal µ-Raman spectral imaging of the waveguides cross-sections confirmed that the cores have very well defined step profiles, and that the increase in the refractive index can be linked to the localized creation of permanent intrinsic defects. These results indicate that this crystalline waveguides are a potential candidate for the development of 3D active waveguide circuits, due to the laser and electro-optic properties of rare earth doped borate crystals.

19.
Opt Express ; 18(24): 24994-9, 2010 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-21164844

RESUMEN

We report high efficiency continuous wave laser oscillations at 1063.6 nm from an ultrafast laser written Nd(3+):GdVO4 channel waveguide under the 808 nm optical excitation. A record 17 mm·s(-1) writing speed was used while the low propagation loss of the waveguide (~0.5 dB·cm(-1)) enabled laser performance with a threshold pump power as low as 52 mW and a near to quantum defect limited laser slope efficiency of 70%.

20.
Opt Express ; 17(20): 17970-5, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19907585

RESUMEN

We report on the experimental observation of "focus splitting" when light is tightly focused into a uniaxial lithium niobate crystal along its optical axis. This effect consists in the focal spot being split into two major sub-peaks along the axial direction. For the microfabrication applications such as three-dimensional photonic crystal fabrication and waveguide writing, this effect is highly undesired since it can lead to the generation of multiple distinct voxels in the vicinity of the focus. The splitting is caused by different birefringence induced aberrations for the ordinary and extraordinary polarization eigenmodes. We present numerical simulations which support our observations and suggest methods to avoid this effect.


Asunto(s)
Modelos Químicos , Niobio/química , Óxidos/química , Refractometría/métodos , Birrefringencia , Simulación por Computador , Luz , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA