Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Chem ; 403(3): 293-303, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34854272

RESUMEN

Melanoma is a type of skin cancer with low survival rates after it has metastasized. In order to find molecular differences that could represent targets of quercetin in anti-melanoma activity, we have chosen SKMEL-103 and SKMEL-28 melanoma cells and human melanocytes as models. Firstly, we observed that quercetin was able in reducing SKMEL-103 cell viability, but not in SKMEL-28. Besides that, quercetin treatment caused inhibition of AXL in both cell lines, but upregulation of PIM-1 in SKMEL-28 and downregulation in SKMEL-103. Moreover, HIF-1 alpha expression decreased in both cell lines. Interestingly, quercetin was more effective against SKMEL-103 than kinases inhibitors, such as Imatinib, Temsirolimus, U0126, and Erlotinib. Interestingly, we observed that while the levels of succinate dehydrogenase and voltage-dependent anion channel increased in SKMEL-103, both proteins were downregulated in SKMEL-28 after quercetin's treatment. Furthermore, AKT, AXL, PIM-1, ABL kinases were much more active and chaperones HSP90, HSP70 and GAPDH were highly expressed in SKMEL-103 cells in comparison with melanocytes. Our findings indicate, for the first time, that the efficacy of quercetin to kill melanoma cells depends on its ability in inhibiting tyrosine kinase and upregulating mitochondrial proteins, at least when SKMEL-103 and SKMEL-28 cells response were compared.


Asunto(s)
Melanoma , Quercetina , Apoptosis , GTP Fosfohidrolasas/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/farmacología , Quercetina/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/farmacología , Succinato Deshidrogenasa/metabolismo , Tirosina/farmacología
2.
J Cell Biochem ; 118(11): 3846-3854, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28387439

RESUMEN

In chemoresistant leukemia cells (Lucena-1), the low molecular weight protein tyrosine phosphatase (LMWPTP) is about 20-fold more active than in their susceptible counterpart (K562). We found this phosphatase ensures the activated statuses of Src and Bcr-Abl. Since, phosphorylation and dephosphorylation of proteins represent a key post-translational regulation of several enzymes, we also explored the kinome. We hereby show that LMWPTP superactivation, together with kinome reprogramming, cooperate towards glucose addiction. Resistant leukemia cells present lower levels of oxidative metabolism, in part due to downexpression of the following mitochondrial proteins: pyruvate dehydrogenase subunit alpha 1, succinate dehydrogenase, and voltage-dependent anion channel. Those cells displayed higher expression levels of glucose transporter 1 and higher production of lactate. In addition, Lucena-1 siRNA LMWPTP cells showed lower expression levels of glucose transporter 1 and lower activity of lactate dehydrogenase. On the other hand, K562 cells overexpressing LMWPTP presented higher expression/activity of both proteins. In this study, we show that LMWPTP is a pivotal mediator of metabolic reprogramming that confers survival advantages to leukemia cells against death stimuli. J. Cell. Biochem. 118: 3846-3854, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Resistencia a Antineoplásicos , Glucólisis , Leucemia/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Enfermedad Aguda , Humanos , Células K562 , Leucemia/patología , Fosforilación
3.
Tumour Biol ; 37(10): 14049-14058, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27502397

RESUMEN

Treatment of metastatic melanoma still remains a challenge, since in advanced stage it is refractory to conventional treatments. Most patients with melanoma have either B-RAF or N-RAS mutations, and these oncogenes lead to activation of the RAS-RAF-MEK-ERK and AKT signal pathway, keeping active the proliferation and survival pathways in the cell. Therefore, the identification of small molecules that block metastatic cell proliferation and induce cell death is needed. Violacein, a pigment produced by Chromobacterium violaceum found in Amazon River, has been used by our group as a biotool for scrutinizing signaling pathways associated with proliferation, survival, aggressiveness, and resistance of cancer cells. In the present study, we demonstrate that violacein diminished the viability of RAS- and RAF-mutated melanoma cells (IC50 value ∼500 nM), and more important, this effect was not abolished after treatment medium removal. Furthermore, violacein was able to reduce significantly the invasion capacity of metastatic melanoma cells in 3D culture. In the molecular context, we have shown for the first time that violacein causes a strong drop on histone deacetylase 6 expression, a proliferating activator, in melanoma cells. Besides, an inhibition of AXL and AKT was detected. All these molecular events propitiate an inhibition of autophagy, and consequently, melanoma cell death by apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , GTP Fosfohidrolasas/genética , Indoles/farmacología , Melanoma/secundario , Proteínas de la Membrana/genética , Mutación/genética , Western Blotting , Proliferación Celular/efectos de los fármacos , Humanos , Melanoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA