RESUMEN
Velvet mesquite (Prosopis velutina) is a native legume of the southwestern United States and northwestern Mexico, contributing significantly to the desert ecosystem and playing key ecological roles. It is also an important cause of allergic respiratory disease widely distributed in the Sonoran, Chihuahuan, and Mojave Deserts. However, no allergens from velvet mesquite pollen have been identified to date. Pollen proteins were extracted and analyzed by one- and two-dimensional electrophoresis and immunoblotting using a pool of 11 sera from mesquite-sensitive patients as the primary antibody. IgE-recognized protein spots were identified by mass spectrometry and bioinformatics analysis. Twenty-four unique proteins, including proteins well known as pollen, food, airway, or contact allergens and four proteins not previously reported as pollen allergens, were identified. This is the first report on allergenic proteins in velvet mesquite pollen. These findings will contribute to the development of specific diagnosis and treatment of mesquite pollen allergy.
RESUMEN
In this work, previously synthesized and characterized core-shell silica nanoparticles (FCSNP) functionalized with immobilized molecular bait, Cibacron blue, and a porous polymeric bis-acrylamide shell were incubated with pooled urine samples from adult women or men with normal weight, overweight or obesity for the isolation of potential biomarkers. A total of 30 individuals (15 woman and 15 men) were included. FCSNP allowed the capture of a variety of low molecular weight (LMW) proteins as evidenced by mass spectrometry (MS) and the exclusion of high molecular weight (HMW) proteins (>34 kDa) as demonstrated by SDS-PAGE and 2D SDS-PAGE. A total of 36 proteins were successfully identified by MS and homology database searching against the Homo sapiens subset of the Swiss-Prot database. Identified proteins were grouped into different clusters according to their abundance patterns. Four proteins were found only in women and five only in men, whereas 27 proteins were in urine from both genders with different abundance patterns. Based on these results, this new approach represents an alternative tool for isolation and identification of urinary biomarkers.
Asunto(s)
Obesidad/orina , Proteinuria/orina , Proteómica , Adulto , Biomarcadores/orina , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND: Red oak pollen is an important cause of allergic respiratory disease and it is widely distributed in North America and central Europe. To date, however, red oak pollen allergens have not been identified. Here, we describe the allergenic protein profile from red oak pollen. METHODS: Total proteins were extracted from red oak pollen using a modified phenolic extraction method, and, subsequently, proteins were separated by two-dimensional gel electrophoresis (2DE) for both total protein stain (Coomassie Blue) and immunoblotting. A pool of 8 sera from red oak sensitive patients was used to analyze blotted proteins. Protein spots were analyzed by Mass Spectrometry. RESULTS: Electrophoretic pattern of total soluble proteins showed higher intensity bands in the regions of 26-40 and 47-52 kDa. Two dimensional immunoblots using pool sera from patients revealed four allergenic proteins spots with molecular masses in the range from 50 to 55 kDa. Mass spectrometry analysis identified 8 proteins including Enolase 1 and Enolase 1 chloroplastic, Xylose isomerase (X1 isoform), mitochondrial Aldehyde dehydrogenase, UTP-Glusose-1-phosphate uridylyltransferase, Betaxylosidase/alpha-l-arabinofuranosidase and alpha- and beta subunits of ATP synthase. CONCLUSIONS: This study has identified for first time 8 IgE binding proteins from red oak pollen. These findings will pave the way towards the development of new diagnostic and therapeutic modalities for red oak allergy.
RESUMEN
Silica nanoparticles were functionalized with immobilized molecular bait, Cibacron Blue, and a porous polymeric bis-acrylamide shell. These nanoparticles represent a new alternative to capture low molecular weight (LMW) proteins/peptides, that might be potential biomarkers. Functionalized core-shell silica nanoparticles (FCSNP) presented a size distribution of 243.9 ± 11.6 nm and an estimated surface charge of -38.1 ± 0.9 mV. The successful attachment of compounds at every stage of synthesis was evidenced by ATR-FTIR. The capture of model peptides was determined by mass spectrometry, indicating that only the peptide with a long sequence of hydrophobic amino acids (alpha zein 34-mer) interacted with the molecular bait. FCSNP excluded the high molecular weight protein (HMW), BSA, and captured LMW proteins (myoglobin and aprotinin), as evidenced by SDS-PAGE. Functionalization of nanoparticles with Cibacron Blue was crucial to capture these molecules. FCSNP were stable after twelve months of storage and maintained a capacity of 3.1-3.4 µg/mg.