Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 96(7): 2567-2578, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29762734

RESUMEN

As a result of selecting for increased litter size, newborn piglets are being born lighter and have a lower chance of survival. Raising fewer pigs to market weight would have a negative impact on the industry and farmer profitability; thus, understanding the genetics of individual growth performance traits will determine whether these traits will play an important role in pig breeding schemes. This study aimed to estimate genetic parameters for individual birth weight (BW), weaning weight (WW), and probe weight (PW) in Canadian-purebred Yorkshire and Landrace pigs. PW is a live weight taken at the time of the ultrasound measurements, when pigs weigh about 100 kg. Data were collected from 2 large and related breeding herds from 2003 to 2015. Four linear animal models were used, which included the following: Model 1-direct additive genetic effect; Model 2-direct additive genetic and maternal genetic effect; Model 3-direct additive genetic and common litter effect; and Model 4-direct additive genetic, maternal genetic, and common litter effect. The model which included all 3 random effects (Model 4) was determined to be the best fit to the data. Low to moderate direct heritability estimates were observed as follows: 0.15 ± 0.03 for BW, 0.04 ± 0.01 for WW, and 0.33 ± 0.03 for PW for the Yorkshire breed; and 0.05 ± 0.01 for BW, 0.01 ± 0.01 for WW, and 0.27 ± 0.03 for PW in the Landrace breed. As expected, the direct heritability estimates increased with age as a result of decreased maternal influence on the trait. Bivariate animal models were also used to estimate genetic and environmental correlations between traits. Strong direct genetic correlations were observed between BW and WW in both breeds. Based on the estimates of genetic parameters, individual BW could be evaluated and considered in breeding programs aiming to increase BW and improve subsequent performance. Different selection emphasis could also be applied on direct and maternal additive genetic effects on BW to optimize the breeding programs and improve selection efficiency.


Asunto(s)
Peso al Nacer/genética , Herencia Materna , Porcinos/genética , Animales , Peso Corporal/genética , Cruzamiento , Canadá , Ambiente , Femenino , Modelos Lineales , Tamaño de la Camada , Masculino , Parto , Fenotipo , Embarazo , Porcinos/fisiología , Destete
2.
Asia Ocean J Nucl Med Biol ; 1(2): 35-46, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-27408848

RESUMEN

OBJECTIVES: To investigate the impact of respiratory motion on localization, and quantification of lung lesions for the Gross Tumor Volume utilizing a fully automated Auto3Dreg program and dynamic NURBS-based cardiac-torso digitized phantom (NCAT). METHODS: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumor lesions. The motion correction technique adopted in this study was an image-based motion correction approach using, a voxel-intensity-based and a multi-resolution multi-optimization (MRMO) algorithm. The NCAT phantom was used to generate CT attenuation maps and activity distribution volumes for the lung regions. All the generated frames were co-registered to a reference frame using a time efficient scheme. Quantitative assessment including Region of Interest (ROI), image fidelity and image correlation techniques, as well as semi-quantitative line profile analysis and qualitatively overlaying non-motion and motion corrected image frames were performed. RESULTS: The largest motion was observed in the Z-direction. The greatest translation was for the frame 3, end inspiration, and the smallest for the frame 5 which was closet frame to the reference frame at 67% expiration. Visual assessment of the lesion sizes, 20-60mm at 3 different locations, apex, mid and base of lung showed noticeable improvement for all the foci and their locations. The maximum improvements for the image fidelity were from 0.395 to 0.930 within the lesion volume of interest. The greatest improvement in activity concentration underestimation was 7.7% below the true activity for the 20 mm lesion in comparison to 34.4% below, prior to correction. The discrepancies in activity underestimation were reduced with increasing the lesion sizes. Overlaying activity distribution on the attenuation map showed improved localization of the PET metabolic information to the anatomical CT images. CONCLUSION: The respiratory motion correction for the lung lesions has led to an improvement in the lesion size, localization and activity quantification with a potential application in reducing the size of the PET GTV for radiotherapy treatment planning applications and hence improving the accuracy of the regime in treatment of lung cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA