Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 52(5): 2649-2657, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29430920

RESUMEN

Over the last several decades dissolved organic carbon concentrations (DOC) in surface waters have increased throughout much of the northern hemisphere. Several hypotheses have been proposed regarding the drivers of this phenomenon including decreased sulfur (S) deposition working via an acidity- change mechanism. Using fluorescence spectroscopy and data from two long-term (24+ years at completion of this study) whole watershed acidification experiments, that is, the Bear Brook Watershed in Maine (BBWM) and Fernow Experimental Forest in West Virginia (FEF) allowed us to control for factors other than the acidity-change mechanism (e.g., differing vegetation, shifting climate), resulting in the first study we are aware of where the acidity change mechanism could be experimentally isolated at the whole ecosystem and decadal scales as the driver of shifts in DOM dynamics. The multidecadal record of stream chemistry at BBWM demonstrates a significantly lower DOC concentration in the treated compared to the reference watershed. Additionally, at both BBWM and FEF we found significant and sustained differences in stream fluorescence index (FI) between the treated and reference watersheds, with the reference watersheds demonstrating a stronger terrestrial DOM signature. These data, coupled with evidence of pH shifts in upper soil horizons support the hypotheses that declines in S deposition are driving changes in the solubility of soil organic matter and increased flux of terrestrial DOC to water bodies.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Carbono , Concentración de Iones de Hidrógeno , Maine , West Virginia
2.
PLoS One ; 9(11): e112362, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25391023

RESUMEN

Even though fine-root turnover is a highly studied topic, it is often poorly understood as a result of uncertainties inherent in its sampling, e.g., quantifying spatial and temporal variability. While many methods exist to quantify fine-root turnover, use of minirhizotrons has increased over the last two decades, making sensor errors another source of uncertainty. Currently, no standardized methodology exists to test and compare minirhizotron camera capability, imagery, and performance. This paper presents a reproducible, laboratory-based method by which minirhizotron cameras can be tested and validated in a traceable manner. The performance of camera characteristics was identified and test criteria were developed: we quantified the precision of camera location for successive images, estimated the trueness and precision of each camera's ability to quantify root diameter and root color, and also assessed the influence of heat dissipation introduced by the minirhizotron cameras and electrical components. We report detailed and defensible metrology analyses that examine the performance of two commercially available minirhizotron cameras. These cameras performed differently with regard to the various test criteria and uncertainty analyses. We recommend a defensible metrology approach to quantify the performance of minirhizotron camera characteristics and determine sensor-related measurement uncertainties prior to field use. This approach is also extensible to other digital imagery technologies. In turn, these approaches facilitate a greater understanding of measurement uncertainties (signal-to-noise ratio) inherent in the camera performance and allow such uncertainties to be quantified and mitigated so that estimates of fine-root turnover can be more confidently quantified.


Asunto(s)
Fotograbar/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Calibración , Fotograbar/métodos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Relación Señal-Ruido , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA