Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 950: 174967, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39097010

RESUMEN

Contaminant leaching from asphalt pavements poses a significant environmental concern, potentially damaging soil and groundwater quality. The growing interest in incorporating recycled materials in asphalt pavements has further raised concerns over the potential environmental hazards due to contaminant leaching. Consequently, this paper offers a comprehensive review of the literature over the past three decades structured into six sections: groundwater contamination via leaching, methodologies for evaluating leaching, analysis of contaminants, contaminants and leaching from road materials incorporating recycled waste, other factors affecting leaching of pollutants from asphalt pavements, and mathematical models to predict leaching from asphalt pavements. Despite the importance of addressing leaching issues, there is a lack of standardised leaching tests and guidelines specific to asphalt materials, limited attention to evaluating contaminants beyond heavy metals and PAHs in asphalt leachates, insufficient understanding of optimal instrument parameters for asphalt leachate analysis, and a scarcity of mathematical models to predict future leaching potential.

2.
Sci Total Environ ; 921: 171231, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417509

RESUMEN

The deterioration of concrete sewer structures due to bio-corrosion presents critical and escalating challenges from structural, economic and environmental perspectives. Despite decades of research, this issue remains inadequately addressed, resulting in billions of dollars in maintenance costs and a shortened service life for sewer infrastructure worldwide. This challenge is exacerbated by the absence of standardized test methods and universally accepted mitigation strategies, leaving industries and stakeholders confronting an increasingly pressing problem. This paper aims to bridge this knowledge gap by providing a comprehensive review of the complex mechanisms of bio-corrosion, focusing on the formation and accumulation of hydrogen sulfide, its conversion into sulfuric acid and the subsequent deterioration of concrete materials. The paper also explores various factors affecting bio-corrosion rates, including environmental conditions, concrete properties and wastewater characteristics. The paper further highlights existing corrosion test strategies, such as chemical tests, in-situ tests and microbial simulations tests along with their general analytical parameters. The conversion of hydrogen sulfide into sulfuric acid is a primary cause of concrete decay and its progression is influenced by environmental conditions, inherent concrete characteristics, and the composition of wastewater. Through illustrative case studies, the paper assesses the practical implications and efficacy of prevailing mitigation techniques. Coating materials provide a protective barrier against corrosive agents among the discussed techniques, while optimised concrete mix designs enhance the inherent resistance and durability of the concrete matrix. Finally, this review also outlines the future prospects and challenges in bio-corrosion research with an aim to promote the creation of more resilient and cost-efficient materials for sewer systems.

3.
Sci Total Environ ; 893: 164869, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329917

RESUMEN

The use of recycled plastic in asphalt is raising interest since contributing to increase the sustainability of roads pavements. The engineering performance of such roads are commonly assessed but scarcely correlated to the environmental impacts of incorporating recycled plastic in asphalt. This research encompasses an evaluation of the mechanical behaviour and environmental impact of introducing low melting point recycled plastics, low density polyethylene and commingled polyethylene/polypropylene, to conventional hot mix asphalt. While this investigation reveals a reduction in moisture resistance between 5 and 22 % contingent on the plastic content, the benefits include a significant 150 % enhancement in fatigue resistance and 85 % improvement in rutting resistance when compared with conventional hot mix asphalt (HMA). From an environmental perspective, high-temperature asphalt production with higher plastic content resulted in decreased gaseous emissions for both types of recycled plastics up to 21 %. Further comparison studies indicate that microplastic generation from recycled plastic-modified asphalt is comparable to that from commercial polymer-modified asphalt products, long employed by the industry. Overall, the use of low melting point recycled plastics as an asphalt modifier is promising since offering both engineering and environmental benefits when compared to conventional asphalt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA