Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 48(8): 417-424, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36073946

RESUMEN

OBJECTIVE: The objective of the work is to enhance the solubility, dissolution, and pharmacokinetic properties of glibenclamide (GLB) via cocrystallization technique. SIGNIFICANCE: Glibenclamide is an oral hypoglycemic agent used for treating non-insulin-dependent (type II) diabetes mellitus. It exhibits poor aqueous solubility and oral bioavailability, thereby compromising its therapeutic effect. Therefore, utilizing cocrystal approach for enhancing the solubility will modulate the physicochemical properties of GLB without altering its molecular structure. METHODS: Cocrystal was prepared by solution crystallization method using coformer malonic acid. The cocrystal was characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared (FT-IR) studies. The prepared cocrystal was subjected to solubility, in vitro dissolution, and pharmacokinetic studies. RESULTS: The DSC endotherms, PXRD patterns, and the FT-IR spectra of the cocrystal established the formation of a cocrystal. The formation of eutectic mixture was refuted upon comparing the DSC endotherm and PXRD pattern of the cocrystal with that of the physical mixture. GLB showed a twofold enhancement in solubility and a significant improvement in the rate of dissolution (p < 0.05, independent t-test) after cocrystallization. The pharmacokinetic parameters on male Sprague Drawly rats showed 1.45 enhancement in AUC0-24 and 1.36-fold enhancement in the Cmax of GLB as compared to the pure drug. CONCLUSION: These findings demonstrate that cocrystallization technique was able to tailor the solubility and dissolution profile of GLB leading to an enhanced pharmacokinetic property.


Asunto(s)
Gliburida , Masculino , Ratas , Animales , Solubilidad , Disponibilidad Biológica , Espectroscopía Infrarroja por Transformada de Fourier , Rastreo Diferencial de Calorimetría , Difracción de Rayos X
2.
Recent Pat Drug Deliv Formul ; 13(1): 62-69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30848223

RESUMEN

BACKGROUND: The present study reports the formation of a cocrystal of candesartan with the coformer methyl paraben, its characterization and determination of its bioavailability. Candesartan is a poorly water-soluble drug having an anti-hypertensive activity. The recent patents on the cocrystals of the drugs Progesterone (US9982007B2), Epalrestat (EP2326632B1), Gefitinib (WO2015170345A1), and Valsartan (CN102702118B) for enhancement of solubility, helped in selection of the drug for this work. METHODS: Candesartan cocrystal was prepared by solution crystallization method. The formation of a new crystalline phase was characterized by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) and Powder X-ray Diffraction (PXRD) studies. Saturation solubility studies were carried out in ethanol: water (50:50 % v/v) mixture. The dissolution studies were conducted in 900 ml of phosphate buffer at pH 7.4(I.P.) with 0.7% w/w of Tween 20 at 50 rpm, maintained at a temperature of 37±0.5°C in a USP type II dissolution apparatus. The pharmacokinetic behavior of candesartan and its cocrystal was thereof investigated in male Wistar rats. RESULTS: There was 6.94 fold enhancement in the solubility of candesartan after its cocrystallization. The dissolution profile of the cocrystal exhibited significant improvement in solubility at 60 and 120 minutes and it remained stable in ethanol: water (50:50%v/v) mixture for 48 h as confirmed by PXRD studies. The AUC0-24of the cocrystal was found to be increased by 2.9 fold in terms of bioavailability as compared to the pure drug. CONCLUSION: The prepared cocrystal was found to be relatively more soluble than the pure drug and also showed an enhanced oral bioavailability as compared to the pure drug.


Asunto(s)
Bencimidazoles/química , Química Farmacéutica/métodos , Parabenos/química , Patentes como Asunto , Tetrazoles/química , Agua/química , Animales , Bencimidazoles/metabolismo , Compuestos de Bifenilo , Cristalización/métodos , Masculino , Parabenos/metabolismo , Ratas , Ratas Wistar , Solubilidad , Tetrazoles/metabolismo , Agua/metabolismo , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA