Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000768

RESUMEN

Large-format additive manufacturing (LFAM) is used to print large-scale polymer structures. Understanding the thermal and mechanical properties of polymers suitable for large-scale extrusion is needed for design and production capabilities. An in-house-built LFAM printer was used to print polyethylene terephthalate glycol with 30% carbon fiber (PETG CF30%) samples for thermomechanical characterization. Thermogravimetric analysis (TGA) shows that the samples were 30% carbon fiber by weight. X-ray microscopy (XRM) and porosity studies find 25% voids/volume for undried material and 1.63% voids/volume for dry material. Differential scanning calorimetry (DSC) shows a glass transition temperature (Tg) of 66 °C, while dynamic mechanical analysis (DMA) found Tg as 82 °C. The rheology indicated that PETG CF30% is a good printing material at 220-250 °C. Bending experiments show an average of 48.5 MPa for flexure strength, while tensile experiments found an average tensile strength of 25.0 MPa at room temperature. Comparison with 3D-printed PLA and PETG from the literature demonstrated that LFAM-printed PETG CF30% had a comparative high Young's modulus and had similar tensile strength. For design purposes, prints from LFAM should consider both material choice and print parameters, especially when considering large layer heights.

2.
Materials (Basel) ; 12(9)2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071962

RESUMEN

Over eighty percent of the navigation steel structures (NSS) in the United States have highly deteriorated design boundary conditions, resulting in overloads that cause fatigue cracking. The NSSs' highly corrosive environment and deterioration of the protective system accelerate the fatigue cracking and cause standard crack repair methods to become ineffective. Numerous studies have assessed and demonstrated the use of carbon fiber reinforced polymers (CFRP) to rehabilitate aging and deteriorated reinforced concrete infrastructure in the aerospace industry. Due to the increase of fatigue and fracture failures of NSS and the shortage of research on CFRP retrofits for submerged steel structures, it is imperative to conduct research on the effects of CFRP repairs on NSS, specifically on the adhesive's chemical bonding to the steel substrate. This was accomplished by developing a new analytical algorithm for CFRP bond-slip behavior, which is based on Volkersen's contact shear single lap joint (SLJ) connection. The algorithm was validated by experimental results of fatigue center-cracked large steel plates repaired with CFRP patches. The state of stresses at the crack tip are largely influenced by a combination of the crack tip plasticity radius and overall bond surface area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA