RESUMEN
The role of polyamine (PA) metabolism in tobacco (Nicotiana tabacum) defense against pathogens with contrasting pathogenic strategies was evaluated. Infection by the necrotrophic fungus Sclerotinia sclerotiorum resulted in increased arginine decarboxylase expression and activity in host tissues, as well as putrescine and spermine accumulation in leaf apoplast. Enhancement of leaf PA levels, either by using transgenic plants or infiltration with exogenous PAs, led to increased necrosis due to infection by S. sclerotiorum. Specific inhibition of diamine and PA oxidases attenuated the PA-induced enhancement of leaf necrosis during fungal infection. When tobacco responses to infection by the biotrophic bacterium Pseudomonas viridiflava were investigated, an increase of apoplastic spermine levels was detected. Enhancement of host PA levels by the above-described experimental approaches strongly decreased in planta bacterial growth, an effect that was blocked by a PA oxidase inhibitor. It can be concluded that accumulation and further oxidation of free PAs in the leaf apoplast of tobacco plants occurs in a similar, although not identical way during tobacco defense against infection by microorganisms with contrasting pathogenesis strategies. This response affects the pathogen's ability to colonize host tissues and results are detrimental for plant defense against necrotrophic pathogens that feed on necrotic tissue; on the contrary, this response plays a beneficial role in defense against biotrophic pathogens that depend on living tissue for successful host colonization. Thus, apoplastic PAs play important roles in plant-pathogen interactions, and modulation of host PA levels, particularly in the leaf apoplast, may lead to significant changes in host susceptibility to different kinds of pathogens.
Asunto(s)
Ascomicetos/fisiología , Nicotiana/microbiología , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Pseudomonas/fisiología , Amina Oxidasa (conteniendo Cobre)/antagonistas & inhibidores , Carboxiliasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Necrosis/microbiología , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/antagonistas & inhibidores , Extractos Vegetales/química , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Putrescina/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espermina/metabolismo , Nicotiana/citología , Nicotiana/metabolismo , Poliamino OxidasaRESUMEN
⢠Polyamine biosynthesis inhibitors were used to study polyamine metabolism during the germination of Sclerotinia sclerotiorum ascospores, and to evaluate the potential of polyamine biosynthesis inhibition for the control of ascospore-borne diseases in plants. ⢠The effects of inhibitors on ascospore germination, free polyamine levels, ornithine decarboxylase activity and development of disease symptoms on tobacco (Nicotiana tabacum) leaf discs inoculated with ascospores were determined. ⢠α-Difluoromethylornithine inhibited ornithine decarboxylase and decreased free spermidine levels, but had no effect on ascospore germination. Both, the spermidine synthase inhibitor cyclohexylamine and the S-adenosyl-methionine decarboxylase inhibitor methylglyoxal bis-[guanyl hydrazone] decreased free spermidine levels, but only the latter inhibited ascospore germination, at concentrations of 5 mm or higher. Lesion development on leaf discs was reduced by cyclohexylamine and methylglyoxal bis-[guanyl hydrazone], but not by α-difluoromethylornithine. In the absence of inhibitors, dormant ascospores contained higher polyamine levels than mycelium. ⢠Ascospore germination did not depend on ornithine decarboxylase activity and inhibitors of this enzyme will probably have a limited potential for the control of ascospore-borne plant diseases. On the contrary, spermidine synthase and S-adenosyl-methionine decarboxylase could be more suitable targets for fungicidal action. The relative insensitivity of ascospore germination to polyamine biosynthesis inhibitors may be caused by their high polyamine content.