RESUMEN
Biogeochemical processes govern the transport and availability of arsenic in sediments. However, little is known about the transition from indigenous communities to cultivable consortia when exposed to high arsenic concentrations. Such cultivable communities could be exploited for arsenic bioremediation of waste streams and polluted sites. Thus, it is crucial to understand the dynamics and selective pressures that shape the communities during the development of customized bacterial consortia. First, from the arsenic partitioning of two sediments with high arsenic concentrations, we found that up to 55% of arsenic was bioavailable because it was associated with the soluble, carbonate, and ionically exchangeable fractions. Next, we prepared sediment enrichment cultures under arsenate- and sulfate-reducing conditions to precipitate arsenic sulfide biominerals and analyze the communities. The produced biominerals were used as the inoculum to develop bacterial consortia via successive transfers. Tracking of the 16S rRNA gene in the fresh sediments, sediment enrichments, biogenic minerals, and bacterial consortia revealed differences in the bacterial communities. Removing the sediment caused a substantial decrease in diversity and shifts toward the dominance of the Firmicutes phylum to the detriment of Proteobacteria. In agreement with the 16S rRNA gene results, the sequencing of the arrA gene confirmed the presence of phylotypes closely related to Desulfosporosinus sp. Y5 (100% similarity), highlighting the pivotal role of this genus in the removal of soluble arsenic. Here, we demonstrated for the first time that besides being important as arsenic sinks, the biogenic arsenic sulfide minerals are reservoirs of arsenic resistant/respiring bacteria and can be used to culture them.
Asunto(s)
Arsénico , Contaminantes Químicos del Agua , ARN Ribosómico 16S/genética , Contaminantes Químicos del Agua/análisis , Bacterias/genética , Sulfuros , Sedimentos GeológicosRESUMEN
Several studies have demonstrated that gypsum (CaSO4·2H2O) and calcite (CaCO3) can be important hosts of arsenic in contaminated hydrogeological systems. However, the extent to which microbial reducing processes contribute to the dissolution and transformation of carbonate and sulfate minerals and, thereby, to arsenic mobilization is poorly understood. These processes are likely to have a strong impact on arsenic mobility in iron-poor environments and in reducing aquifers where iron oxyhydroxides become unstable. Anoxic batch bioassays with arsenate (As(V)) coprecipitated with calcite, gypsum, or ferrihydrite (Fe(OH)3) were conducted in the presence of sulfate or molybdate to examine the impact of bioprocesses (i.e. As(V), sulfate, and Fe(III)-reduction) on arsenic dissolution, speciation, and eventual remineralization. Microbial reduction of As(V)-bearing calcite caused an important dissolution of arsenite, As(III), which remained in solution up to the end of the experiment (30 days). The reduction of As(V) from gypsum-As(V) also led to the release of As(III), which was subsequently remineralized, possibly as arsenic sulfides. The presence of sulfate triggered arsenic dissolution in the bioassays with ferrihydrite-As(V). This study showed that although gypsum and calcite have a lower capacity to bind arsenic, compared to iron oxides, they can play a critical role in the biogeochemical cycle of arsenic in natural calcareous and gypsiferous systems depleted of iron since they can be a source of electron acceptors for reducing bioprocesses.
Asunto(s)
Arsénico/química , Bacterias/metabolismo , Carbonato de Calcio/química , Sulfato de Calcio/química , Compuestos Férricos/química , Arseniatos/química , Arsenicales/química , Arsenitos/química , Carbonatos/química , Agua Subterránea/química , Hierro/química , Molibdeno/química , Oxidación-Reducción , Solubilidad , Sulfatos/química , Sulfuros/químicaRESUMEN
High arsenic concentrations have been detected in alluvial aquifers of arid and semi-arid zones in Mexico. This work describes the potential of microbial arsenate reduction of the indigenous community present in sediments from an arsenic contaminated aquifer. Microcosms assays were conducted to evaluate arsenate and sulfate-reducing activities of the native microbiota. Two different sediments were used as inoculum in the assays amended with lactate (10mM) as electron donor and with sulfate and arsenate (10mM each) as electron acceptors. Sediments were distinguished by their concentration of total arsenic 238.3±4.1mg/kg or 2263.1±167.7mg/kg, which may be considered as highly contaminated sediments with arsenic. Microbial communities present in both sediments were able to carry out arsenate reduction, accomplished within 4days, with the corresponding formation of arsenite; sulfate reduction took place as well. Both reducing activities occurred without previous acclimation period or enrichment, even at potential inhibitory concentrations of arsenate as high as 750mg/L (10mM). The formation of a yellowish colloidal precipitate was evident when both reducing processes occurred in the microcosm, which contributed to remove between 52 and 90.9% of As(III) from the liquid phase by bioprecipitation of arsenic as arsenic sulfide.