Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Sci Total Environ ; 951: 175531, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147056

RESUMEN

Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities. Although not discussed critically, the organo-forms of these inorganic metal(loid)s are considered a greater risk to humans than their elemental forms possibly due to physico-chemical modulation triggering redox alterations or by the involvement of biological metabolism. This extensive review describes the chemical and physical causes of organometals and organometal(loid)s distribution in the environment with ecotoxicity assessment and potential remediation strategies. Organo forms of various metal(loid)s, such as mercury (Hg), arsenic (As), lead (Pb), tin (Sn), antimony (Sb), selenium (Se), and cadmium (Cd) have been discussed in the context of their ecotoxicity. In addition, we elaborated on the transformation, speciation and transformation pathways of these toxic metal(loid)s in soil-water-plant-microbial systems. The present review has pointed out the status of toxic organometal(loid)s, which is required to make the scientific community aware of this pressing condition of organometal(loid)s distribution in the environment. The gradual disposal and piling of organometal(loid)s in the environment demand a thorough revision of the past-present status with possible remediation strategies prescribed as reflected in this review.


Asunto(s)
Restauración y Remediación Ambiental , Medición de Riesgo , Restauración y Remediación Ambiental/métodos , Contaminantes Ambientales , Metales Pesados/análisis , Metaloides/análisis , Mercurio/análisis , Arsénico/análisis , Monitoreo del Ambiente , Contaminación Ambiental , Humanos , Antimonio/análisis
2.
Sci Total Environ ; 951: 174962, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39059650

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) present significant environmental and health hazards due to their inherent persistence, ubiquitous presence in the environment, and propensity for bioaccumulation. Consequently, the development of efficacious remediation strategies for soil and water contaminated with PFAS is imperative. Biochar, with its unique properties, has emerged as a cost-effective adsorbent for PFAS. Despite this, a comprehensive review of the factors influencing PFAS adsorption and immobilization by biochar is lacking. This narrative review examines recent findings indicating that the application of biochar can effectively immobilize PFAS, thereby mitigating their environmental transport and subsequent ecological impact. In addition, this paper reviewed the sorption mechanisms of biochar and the factors affecting its sorption efficiency. The high effectiveness of biochars in PFAS remediation has been attributed to their high porosity in the right pore size range (>1.5 nm) that can accommodate the relatively large PFAS molecules (>1.02-2.20 nm), leading to physical entrapment. Effective sorption requires attraction or bonding to the biochar framework. Binding is stronger for long-chain PFAS than for short-chain PFAS, as attractive forces between long hydrophobic CF2-tails more easily overcome the repulsion of the often-anionic head groups by net negatively charged biochars. This review summarizes case studies and field applications highlighting the effectiveness of biochar across various matrices, showcasing its strong binding with PFAS. We suggest that research should focus on improving the adsorption performance of biochar for short-chain PFAS compounds. Establishing the significance of biochar surface electrical charge in the adsorption process of PFAS is necessary, as well as quantifying the respective contributions of electrostatic forces and hydrophobic van der Waals forces to the adsorption of both short- and long-chain PFAS. There is an urgent need for validation of the effectiveness of the biochar effect in actual environmental conditions through prolonged outdoor testing.


Asunto(s)
Carbón Orgánico , Restauración y Remediación Ambiental , Fluorocarburos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Fluorocarburos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , Suelo/química
3.
Sci Total Environ ; 945: 173998, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901575

RESUMEN

Globally, power stations generate huge amounts of the hazardous waste heavy oil fly ash (HOFA), which is rich in Ni, V, Fe, S, and dumped into landfills. Thus, exploring new approaches for a safe recycling and sustainable management of HOFA is needed and of great environmental interest. The potential application of HOFA as an amendment to sandy soils has not been studied yet. This is the first research investigating the potentiality of using HOFA as a soil conditioner. To this end, we conducted a greenhouse experiment in order to investigate the impacts of HOFA addition (1.2, 2.4, 3.6 t ha-1) to sandy soil on the total and available content of nutrients (e.g., S, Fe, Mn, Cu, Zn) and toxic elements (TEs; e.g., Cd, Co, Cr, Ni, Pb, V) in the soil and their phytoextraction and translocation by lemongrass (Cymbopogon citratus) and common sage (Salvia officinalis). We also assessed the impact of humic acid (HA) foliar application (50 and 100 l ha-1) on the growth and elements accumulation by the two plants. The studied HOFA was acidic and highly enriched in S (43,268.0), V (3,527.0), Ni (1774.0), and Fe (15,159.0) (units in mg kg-1). The X-ray absorption near edge structure (XANES) data showed that V in HOFA was composed primarily of V(IV) sorbed onto goethite, V(V) sorbed onto humic substances, in the forms of V2O3, and VCl4. Addition of the lower doses of HOFA (1.2 and 2.4 t ha-1) did not change significantly soil pH, salinity, and the total and available elements content compared to the unamended soil. Although the elements content in the 3.6 t ha-1 HOFA-treated soil was significantly higher than the untreated, the total content of all elements (except for Ni) was lower than the maximum allowable concentrations in soils. HOFA addition, particularly in the highest dose (3.6 t ha-1), decreased significantly the growth and biomass of both plants. Common sage accumulated more elements than lemongrass; however, the elements content in the plants was lower than the critical concentrations for sensitive plants. The foliar application of humic acid enhanced significantly the plant growth and increased their tolerance to the HOFA-induced stress. We conclude that the addition of HOFA up to 2.4 t ha-1 in a single application as amendment to sandy soils is not likely to create any TE toxicity problems to plants, particularly if combined with a foliar application of humic acid; however, repeated additions of HOFA may induce toxicity. These findings should be verified under field conditions.


Asunto(s)
Ceniza del Carbón , Sustancias Húmicas , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Suelo/química , Cymbopogon , Fertilizantes , Azufre , Metales Pesados/análisis
4.
Sci Total Environ ; 942: 173567, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38848918

RESUMEN

The increasing trend of using agricultural wastes follows the concept of "waste to wealth" and is closely related to the themes of sustainable development goals (SDGs). Carbon-neutral technologies for waste management have not been critically reviewed yet. This paper reviews the technological trend of agricultural waste utilization, including composting, thermal conversion, and anaerobic digestion. Specifically, the effects of exogenous additives on the contents, fractionation, and fate of phosphorus (P) and potentially toxic elements (PTEs) during the composting process have been comprehensively reviewed in this article. The composting process can transform biomass-P and additive-born P into plant available forms. PTEs can be passivated during the composting process. Biochar can accelerate the passivation of PTEs in the composting process through different physiochemical interactions such as surface adsorption, precipitation, and cation exchange reactions. The addition of exogenous calcium, magnesium and phosphate in the compost can reduce the mobility of PTEs such as copper, cadmium, and zinc. Based on critical analysis, this paper recommends an eco-innovative perspective for the improvement and practical application of composting technology for the utilization of agricultural biowastes to meet the circular economy approach and achieve the SDGs.


Asunto(s)
Agricultura , Compostaje , Fósforo , Fósforo/análisis , Agricultura/métodos , Compostaje/métodos , Administración de Residuos/métodos
5.
Sci Total Environ ; 934: 173296, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761950

RESUMEN

This study explored the redox-mediated changes in a lead (Pb) contaminated soil (900 mg/kg) due to the addition of solar cell powder (SC) and investigated the impact of biochar derived from soft wood pellet (SWP) and oil seed rape straw (OSR) (5% w/w) on Pb immobilization using an automated biogeochemical microcosm system. The redox potential (Eh) of the untreated (control; SC) and biochar treated soils (SC + SWP and SC + OSR) ranged from -151 mV to +493 mV. In SC, the dissolved Pb concentrations were higher under oxic (up to 2.29 mg L-1) conditions than reducing (0.13 mg L-1) conditions. The addition of SWP and OSR to soil immobilized Pb, decreased dissolved concentration, which could be possibly due to the increase of pH, co-precipitation of Pb with FeMn (hydro)oxides and pyromorphite, and complexation with biochar surface functional groups. The ability and efficiency of OSR for Pb immobilization were higher than SWP, owing to the higher pH and density of surface functional groups of OSR than SWP. Biochar enhanced the relative abundance of Proteobacteria irrespective of Eh changes, while the relative abundance of Bacteroidota increased under oxidizing conditions. Overall, we found that both OSR and SWP immobilized Pb in solar panel waste contaminated soil under both oxidizing and reducing redox conditions which may mitigate the potential risk of Pb contamination.


Asunto(s)
Compuestos de Calcio , Carbón Orgánico , Plomo , Oxidación-Reducción , Microbiología del Suelo , Contaminantes del Suelo , Plomo/análisis , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Compuestos de Calcio/química , Óxidos/química , Titanio/química , Suelo/química , Bacterias
6.
Environ Int ; 187: 108708, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703447

RESUMEN

Long-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health. We found that 34.1 and 60.3% of those investigated urban dusts have been heavily contaminated with As and Cd, respectively. The input of PTEs was significantly correlated with economic structure due to emissions of industrial activities and traffic emissions being the major sources. Based on the Monte Carlo simulation, we found that the mean hazard index below the safe threshold (1.0) could still cause non-negligible risks to human health. Arsenic and Cr were the major PTEs threatening human health, and relatively high risk levels were observed in cities in China, Korea, Chile, Malaysia, and Australia. Importantly, our analysis suggested that PTEs threaten the health of approximately 92 million adults and 280 million children worldwide. Overall, our study provides important foundational understanding and guidance for policy decision-making to reduce the potential risks associated with PTE exposure and to promote sustainable development of urban economies.


Asunto(s)
Ciudades , Polvo , Exposición a Riesgos Ambientales , Polvo/análisis , Humanos , Medición de Riesgo , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Arsénico/análisis , China , Sustancias Peligrosas/análisis
7.
J Hazard Mater ; 472: 134446, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38696958

RESUMEN

Mercury (Hg) contaminated paddy soils are hot spots for methylmercury (MeHg) which can enter the food chain via rice plants causing high risks for human health. Biochar can immobilize Hg and reduce plant uptake of MeHg. However, the effects of biochar on the microbial community and Hg (de)methylation under dynamic redox conditions in paddy soils are unclear. Therefore, we determined the microbial community in an Hg contaminated paddy soil non-treated and treated with rice hull biochar under controlled redox conditions (< 0 mV to 600 mV) using a biogeochemical microcosm system. Hg methylation exceeded demethylation in the biochar-treated soil. The aromatic hydrocarbon degraders Phenylobacterium and Novosphingobium provided electron donors stimulating Hg methylation. MeHg demethylation exceeded methylation in the non-treated soil and was associated with lower available organic matter. Actinobacteria were involved in MeHg demethylation and interlinked with nitrifying bacteria and nitrogen-fixing genus Hyphomicrobium. Microbial assemblages seem more important than single species in Hg transformation. For future directions, the demethylation potential of Hyphomicrobium assemblages and other nitrogen-fixing bacteria should be elucidated. Additionally, different organic matter inputs on paddy soils under constant and dynamic redox conditions could unravel the relationship between Hg (de)methylation, microbial carbon utilization and nitrogen cycling.


Asunto(s)
Carbón Orgánico , Mercurio , Compuestos de Metilmercurio , Oryza , Oxidación-Reducción , Microbiología del Suelo , Contaminantes del Suelo , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Carbón Orgánico/química , Metilación , Compuestos de Metilmercurio/metabolismo , Mercurio/metabolismo , Bacterias/metabolismo , Bacterias/genética
9.
Nat Food ; 5(4): 301-311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605129

RESUMEN

Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.


Asunto(s)
Compuestos de Metilmercurio , Oryza , Microbiología del Suelo , Contaminantes del Suelo , Bioacumulación , Compuestos de Metilmercurio/metabolismo , Compuestos de Metilmercurio/análisis , Microbiota/efectos de los fármacos , Oryza/metabolismo , Oryza/química , Oryza/microbiología , Suelo/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis
10.
Sci Total Environ ; 929: 172632, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653412

RESUMEN

The effectiveness of almond shell-derived biochar (ASB) in immobilizing soil heavy metals (HMs) and its impact on soil microbial activity and diversity have not been sufficiently studied. Hence, a pot study was carried out to investigate the effectiveness of ASB addition at 2, 4, and 6 % (w/w) on soil biochemical characteristics and the bioavailability of Cd, Cu, Pb, and Zn to tomato (Solanum lycopersicum L.) plants, as compared to the control (contaminated soil without ASB addition). The addition of ASB promoted plant growth (up to two-fold) and restored the damage to the ultrastructure of chloroplast organelles. In addition, ASB mitigated the adverse effects of HMs toxicity by decreasing oxidative damage, regulating the antioxidant system, improving soil physicochemical properties, and enhancing enzymatic activities. At the phylum level, ASB addition enhanced the relative abundance of Actinobacteriota, Acidobacteriota, and Firmicutes while decreasing the relative abundance of Proteobacteria and Bacteroidota. Furthermore, ASB application increased the relative abundance of several fungal taxa (Ascomycota and Mortierellomycota) while reducing the relative abundance of Basidiomycota in the soil. The ASB-induced improvement in soil properties, microbial community, and diversity led to a significant decrease in the DTPA-extractable HMs down to 41.0 %, 51.0 %, 52.0 %, and 35.0 % for Cd, Cu, Pb, and Zn, respectively, as compared to the control. The highest doses of ASB (ASB6) significantly reduced the metals content by 26.0 % for Cd, 78.0 % for Cu, 38.0 % for Pb, and 20.0 % for Zn in the roots, and 72.0 % for Cd, 67.0 % for Cu, 46.0 % for Pb, and 35.0 % for Zn in the shoots, as compared to the control. The structural equation model predicts that soil pH and organic matter are driving factors in reducing the availability and uptake of HMs. ASB could be used as a sustainable trial for remediation of HMs polluted soils and reducing metal content in edible plants.


Asunto(s)
Antioxidantes , Carbón Orgánico , Metales Pesados , Microbiota , Prunus dulcis , Microbiología del Suelo , Contaminantes del Suelo , Solanum lycopersicum , Carbón Orgánico/química , Contaminantes del Suelo/metabolismo , Antioxidantes/metabolismo , Microbiota/efectos de los fármacos , Disponibilidad Biológica , Suelo/química
11.
Chemosphere ; 355: 141773, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548076

RESUMEN

Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.


Asunto(s)
Plásticos , Polihidroxialcanoatos , Plásticos/química , Microplásticos , Ecosistema , Contaminación Ambiental , Biodegradación Ambiental , Almidón
12.
J Hazard Mater ; 469: 134023, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492393

RESUMEN

Chronic exposure to high fluoride (F-) levels in groundwater causes community fluorosis and non-carcinogenic health concerns in local people. This study described occurrence, dental fluorosis, and origin of high F-groundwater using δ2H and δ18O isotopes at semiarid Gilgit, Pakistan. Therefore, groundwater (n = 85) was collected and analyzed for F- concentrations using ion-chromatography. The lowest F- concentration was 0.4 mg/L and the highest 6.8 mg/L. F- enrichment is linked with higher pH, NaHCO3, NaCl, δ18O, Na+, HCO3-, and depleted Ca+2 aquifers. The depleted δ2H and δ18O values indicated precipitation and higher values represented the evaporation effect. Thermodynamic considerations of fluorite minerals showed undersaturation, revealing that other F-bearing minerals viz. biotite and muscovite were essential in F- enrichment in groundwater. Positive matrix factorization (PMF) and principal component analysis multilinear regression (PCAMLR) models were used to determine four-factor solutions for groundwater contamination. The PMF model results were accurate and reliable compared with those of the PCAMLR model, which compiled the overlapping results. Therefore, 28.3% exceeded the WHO permissible limit of 1.5 mg/L F-. Photomicrographs of granite rocks showed enriched F-bearing minerals that trigger F- in groundwater. The community fluorosis index values were recorded at > 0.6, revealing community fluorosis and unsuitability of groundwater for drinking.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Fluoruros/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Minerales/análisis , Agua Subterránea/química , Isótopos/análisis
13.
Sci Total Environ ; 924: 171435, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38438042

RESUMEN

The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils. Alteration in soil physicochemical properties and microbial interactions within the plastisphere facilitated the enrichment of plastic-degrading microorganisms, including those involved in carbon (C) and nutrient cycling. MPs conferred a significant increase in the relative abundance of soil nitrogen (N)-fixing and phosphorus (P)-solubilizing bacteria, while decreased the abundance of soil nitrifiers and ammonia oxidisers. Depending on soil types, MPs increased bioavailable N and P contents and nitrous oxide emission in some instances. Furthermore, MPs regulated soil microbial functional activities owing to the combined toxicity of organic and inorganic contaminants derived from MPs and contaminants frequently encountered in the soil environment. However, a thorough understanding of the interactions among soil microorganisms, MPs and other contaminants still needs to develop. Since currently available reports are mostly based on short-term laboratory experiments, field investigations are needed to assess the long-term impact of MPs (at environmentally relevant concentration) on soil microorganisms and their functions under different soil types and agro-climatic conditions.


Asunto(s)
Microplásticos , Plásticos , Ecosistema , Carbono , Nutrientes , Suelo , Microbiología del Suelo
14.
Environ Sci Technol ; 58(13): 5942-5951, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507823

RESUMEN

The intake of methylmercury (MeHg)-contaminated rice poses immense health risks to rice consumers. However, the mechanisms of MeHg accumulation in rice plants are not entirely understood. The knowledge that the MeHg-Cysteine complex was dominant in polished rice proposed a hypothesis of co-transportation of MeHg and cysteine inside rice plants. This study was therefore designed to explore the MeHg accumulation processes in rice plants by investigating biogeochemical associations between MeHg and amino acids. Rice plants and underlying soils were collected from different Hg-contaminated sites in the Wanshan Hg mining area. The concentrations of both MeHg and cysteine in polished rice were higher than those in other rice tissues. A significant positive correlation between MeHg and cysteine in rice plants was found, especially in polished rice, indicating a close geochemical association between cysteine and MeHg. The translocation factor (TF) of cysteine showed behavior similar to that of the TF of MeHg, demonstrating that these two chemical species might share a similar transportation mechanism in rice plants. The accumulation of MeHg in rice plants may vary due to differences in the molar ratios of MeHg to cysteine and the presence of specific amino acid transporters. Our results suggest that cysteine plays a vital role in MeHg accumulation and transportation inside rice plants.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Compuestos de Metilmercurio/metabolismo , Cisteína/metabolismo , Monitoreo del Ambiente/métodos , Mercurio/análisis , Suelo/química
15.
J Hazard Mater ; 467: 133680, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325094

RESUMEN

Biodegradable mulches are widely recognized as ecologically friendly substances. However, their degradation percentage upon entering soils may vary based on mulch type and soil microbial activities, raising concerns about potential increases in microplastics (MPs). The effects of using different types of mulch on soil carbon pools and its potential to accelerate their depletion have not yet well understood. Therefore, we conducted an 18-month experiment to investigate mulch biodegradation and its effects on CO2 emissions. The experiment included burying soil with biodegradable mulch made of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT), and control treatments with traditional mulch (PE) and no mulch (CK). The results indicated that PE did not degrade, and the degradation percentage of PLA and PBAT were 46.2% and 88.1%, and the MPs produced by the degradation were 6.7 × 104 and 37.2 × 104 items/m2, respectively. Biodegradable mulch, particularly PLA, can enhance soil microbial diversity and foster more intricate bacterial communities compared to PE. The CO2 emissions were 0.58, 0.74, 0.99, and 0.86 g C/kg in CK, PE, PLA, , PBAT, respectively. A positive correlation was observed between microbial abundance and diversity with CO2 emissions, while a negative correlation was observed with soil total organic carbon. Biodegradable mulch enhanced the transformation of soil organic C into CO2 by stimulating microbial activity.


Asunto(s)
Adipatos , Dióxido de Carbono , Microplásticos , Microplásticos/toxicidad , Plásticos , Carbono , Poliésteres , Suelo
16.
J Hazard Mater ; 466: 133619, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310841

RESUMEN

Soil remediation techniques are promising approaches to relieve the adverse environmental impacts in soils caused by neonicotinoids application. This study systematically investigated the remediation mechanisms for peanut shell biochar (PSB) and composted chicken manure (CCM) on neonicotinoid-contaminated soils from the perspective of transformation of geochemical fractions by combining a 3-step sequential extraction procedure and non-steady state model. The neonicotinoid geochemical fractions were divided into labile, moderate-adsorbed, stable-adsorbed, bound, and degradable fractions. The PSB and CCM addition stimulated the neonicotinoid transformation in soils from labile fraction to moderate-adsorbed and stable-adsorbed fractions. Compared with unamended soils, the labile fractions decreased from 47.6% ± 11.8% of the initial concentrations to 12.1 ± 9.3% in PSB-amended soils, and 7.1 ± 4.9% in PSB and CCM-amended soils, while the proportions of moderate-adsorbed and stable-adsorbed fractions correspondingly increased by 1.8-2.4 times and 2.3-4.8 times, respectively. A small proportion (<4.8%) in bound fractions suggested there were rather limited bound-residues after 48 days incubation. The PSB stimulated the -NO2-containing neonicotinoid-degraders, which promoted the degradable fractions of corresponding neonicotinoids by 8.2 ± 6.3%. Degradable fraction of neonicotinoids was the dominant fate in soils, which accounted for 58.3 ± 16.7%. The findings made beneficial theoretical supplements and provided valuable empirical evidence for the remediation of neonicotinoid-contaminated soils.


Asunto(s)
Arachis , Contaminantes del Suelo , Animales , Estiércol , Pollos , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Suelo/química , Neonicotinoides
17.
Sci Total Environ ; 918: 170582, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38309349

RESUMEN

Phosphorus (P) loss caused by the irrational use of manure organic fertilizer has become a worldwide environmental problem, which has caused a potential threat to water safety and intensified agricultural non-point source pollution. Hydrothermal carbonization is method with a low-energy consumption and high efficiency to deal with environmental problems. Application of pig manure-derived hydrochar (PMH) to soil exhibited potential of sustainable development compared with the pristine pig manure (PM). However, the effects of PMH on the distribution of P among the fractions/forms and the interaction between microorganisms and P forms and its relevance to the potential loss of P in paddy fields has not been clarified. Therefore, in this study, a soil column experiment was conducted using the untreated soil (control), and the PM, PMH1 (PMH derived at 180 °C), and PMH2 (PMH derived at 260 °C) treated soils (at the dose of 0.05 %) and rice was cultivated to investigate the effects of PM and PMH on the P fractions, mobilization, ad potential loss via the induced changes on soil microbial community after a complete growing season of rice. The trend of P utilization was evaluated by P speciation via continuous extraction and 31P NMR. The addition of PMH reduced the proportion of residual P in soil by 23.8-26.3 %, and increased the proportion of HCl-P and orthophosphate by 116.2-158.6 % and 6.1-6.8 % compared to PM. The abundance of gcd gene developed after the application of PMH2, which enhanced the mobile forms of soil P utilization via secreting gluconic acid. The network diagram analysis concluded that the changes in various P forms were mainly related to Proteobacteria, Bacteroides, Firmicutes and Acidobacteria. The results illustrated that PMH mitigate the potential risk of P loss more than PM by altering P fractions and affecting soil microbial community.


Asunto(s)
Microbiota , Oryza , Porcinos , Animales , Suelo/química , Oryza/microbiología , Estiércol , Fósforo/análisis , Fertilizantes/análisis
18.
J Hazard Mater ; 469: 133881, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422740

RESUMEN

Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.


Asunto(s)
Ecosistema , Retardadores de Llama , Humanos , Bromo , Retardadores de Llama/análisis , Gestión de Riesgos , Suelo/química
19.
Sci Total Environ ; 916: 170260, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253105

RESUMEN

Mercury (Hg) contamination in aquatic environments presents a significant ecological and human health concern. This study explored the relationship between catchment land use and Hg concentrations within Qinghai Lake sediment, the largest lake in China, situated on the Qinghai-Tibet plateau. The study entailed detailed mapping of Hg sediment concentrations and a subsequent environmental risk assessment. Considering the complex nature of the plateau landform and surface vegetation, the study area was delineated at a 100 km radius centered on Qinghai Lake, which was divided into 30 sectors to quantify relationships between land use and the sediment Hg concentration. The results revealed a mean sediment Hg concentration of 29.91 µg/kg, which was elevated above the background level. Kendall's correlation analysis revealed significant but weak associations between sediment Hg concentrations and three land use types: grassland (rangeland and trees) (rs = 0.27, p < 0.05), crops (rs = -0.37, p < 0.05), and bare ground (rs = -0.25, p < 0.1), suggesting that growing areas of grassland correlated with higher Hg levels in the lake sediment, in contrast to bare ground or crops area, which correlated with lower Hg concentrations. Multiple linear regression models also observed weak negative relationships between bare ground and crops with sediment Hg concentration. This research methodology enhances our understanding of the impact of land use on Hg accumulation in lake sediments and underscores the need for integrated watershed management strategies to mitigate Hg pollution in Qinghai Lake.

20.
Sci Total Environ ; 916: 170013, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242452

RESUMEN

Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide. Ingestion of food products containing food additive nanomaterials via dietary intake is considered to be one of the major pathways of human exposure to nanomaterials. Food additive nanomaterials reach the terrestrial and aquatic environments directly through the disposal of food wastes in landfills and the application of food waste-derived soil amendments. A significant amount of ingested food additive nanomaterials (> 90 %) is excreted, and these nanomaterials are not efficiently removed in the wastewater system, thereby reaching the environment indirectly through the disposal of recycled water and sewage sludge in agricultural land. Food additive nanomaterials undergo various transformation and reaction processes, such as adsorption, aggregation-sedimentation, desorption, degradation, dissolution, and bio-mediated reactions in the environment. These processes significantly impact the transport and bioavailability of nanomaterials as well as their behaviour and fate in the environment. These nanomaterials are toxic to soil and aquatic organisms, and reach the food chain through plant uptake and animal transfer. The environmental and health risks of food additive nanomaterials can be overcome by eliminating their emission through recycled water and sewage sludge.


Asunto(s)
Nanoestructuras , Eliminación de Residuos , Contaminantes del Suelo , Animales , Humanos , Suelo , Aguas del Alcantarillado , Ecosistema , Alimentos , Contaminantes del Suelo/análisis , Ambiente , Aditivos Alimentarios , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA