Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36431685

RESUMEN

The absorption of waves of the centimeter and millimeter wavebands in composites with Finemet alloy particles and carbon nanotubes has been studied. It has been established that ferromagnetic resonance and antiresonance are observed in such composites. A method is proposed for calculating the effective dynamic magnetic permeability of a composite containing both a random distribution of ferromagnetic particles and a part of the particles oriented in the same way. In the approximation of effective parameters, the dependences of the transmission and reflection coefficients of microwaves are calculated. It is shown that the theoretical calculation confirms the existence of resonant features of these dependences caused by ferromagnetic resonance and antiresonance. The theory based on the introduction of effective parameters satisfactorily describes the course of the field dependence of the coefficients and the presence of resonance features in these dependences. The frequency dependence of the complex permittivity of the composite is determined. The dependence of the complex magnetic permeability on the magnetic field for millimeter-wave frequencies is calculated.

2.
Materials (Basel) ; 15(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36234245

RESUMEN

Carbon-based nanomaterials are crucial for most branches of modern technology [...].

3.
Materials (Basel) ; 15(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897559

RESUMEN

The magnetic and microwave properties of nanocomposites containing iron particles encapsulated in a carbon shell (Fe@C), as well as carbon nanotubes (CNT), have been experimentally studied. The examination of magnetic properties of composites shows that the materials under study contain a ferromagnetic component. The availability of ferromagnetic ordering for the dielectric matrix-based nanocomposite sample with Fe@C particles has been confirmed by the measurement results of the transmission and the reflection coefficients of the microwaves, since the ferromagnetic resonance has been observed. Furthermore, in the fields less than the field of ferromagnetic resonance, there are the signs of the presence of ferromagnetic antiresonance. The ferromagnetic resonance leads to minima in the transmission and reflection coefficients, whereas the antiresonance, conversely, leads to maxima in the reflection coefficient. The measurement results have been compared with the theoretical calculations of the field dependence of microwave transmission and reflection coefficients.

4.
Nanomaterials (Basel) ; 11(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361134

RESUMEN

Propagation of microwaves is studied in a composite material containing flakes of Fe-Si-Nb-Cu-B alloy placed into an epoxyamine matrix. The theory is worked out, which permits to calculate the coefficients of the dynamic magnetic permeability tensor and the effective magnetic permeability of the transversely magnetized composite. The measurements of magnetic field dependences of the transmission and reflection coefficients were carried out at frequencies from 12 to 38 GHz. Comparison between calculated and measured coefficients were conducted, which show that the calculation reproduces all main features of the resonance variations caused by ferromagnetic resonance and antiresonance. The dissipation of microwave power was calculated and measured. It is shown that the penetration depth of the electromagnetic field increases under antiresonance condition and decreases under resonance.

5.
Materials (Basel) ; 14(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201669

RESUMEN

The microwave properties of a composite material containing flakes of finemet-type nanocrystalline alloy placed in the epoxy matrix have been investigated. Two compositions have been studied: with 15% and 30% flakes. Frequency dependences of transmission and reflection coefficients are measured in the frequency range from 12 to 38 GHz. The dielectric permittivity and magnetic permeability are obtained, and the microwave losses are calculated. The dependences of transmission and reflection coefficients have been drawn as functions of wave frequency and thickness of the composite material, taking into account the frequency dependences of permittivity and permeability. The regions of maximal and minimal microwave absorption have been defined. The influence of wave interference on the frequency dependence of microwave absorption is studied.

6.
Adv Mater ; : e1802837, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29962099

RESUMEN

The emerging field of nanomagnonics utilizes high-frequency waves of magnetization-spin waves-for the transmission and processing of information on the nanoscale. The advent of spin-transfer torque has spurred significant advances in nanomagnonics, by enabling highly efficient local spin wave generation in magnonic nanodevices. Furthermore, the recent emergence of spin-orbitronics, which utilizes spin-orbit interaction as the source of spin torque, has provided a unique ability to exert spin torque over spatially extended areas of magnonic structures, enabling enhanced spin wave transmission. Here, it is experimentally demonstrated that these advances can be efficiently combined. The same spin-orbit torque mechanism is utilized for the generation of propagating spin waves, and for the long-range enhancement of their propagation, in a single integrated nanomagnonic device. The demonstrated system exhibits a controllable directional asymmetry of spin wave emission, which is highly beneficial for applications in nonreciprocal magnonic logic and neuromorphic computing.

7.
Artículo en Inglés | MEDLINE | ID: mdl-23143586

RESUMEN

Special features of ultrasonic pulse wave field detection with concave regions of the wave fronts are investigated with the use of ultrasonic laser interferometry technique. Experimental proofs of the wave front with concave regions are obtained and it is found that the nonmonotonic wave front profiles are well described by the fourth-order even polynomial. The model proposed is applied to the investigation of the spatiotemporal structure of elastic wave fields on solid surfaces. The results obtained can be used for estimating the local wave front curvature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA