RESUMEN
The composition of arbuscular mycorrhizal fungal (AMF) communities should reflect not only responses to host and soil environments, but also differences in functional roles and costs vs. benefits among arbuscular mycorrhizal fungi. The coffee agroecosystem allows exploration of the effects of both light and soil fertility on AMF communities, because of the variation in shade and soil nutrients farmers generate through field management. We used high-throughput ITS2 sequencing to characterize the AMF communities of coffee roots in 25 fields in Costa Rica that ranged from organic management with high shade and no chemical fertilizers to conventionally managed fields with minimal shade and high N fertilization, and examined relationships between AMF communities and soil and shade parameters with partial correlations, NMDS, PERMANOVA, and partial least squares analysis. Gigasporaceae and Acaulosporaceae dominated coffee AMF communities in terms of relative abundance and richness, respectively. Gigasporaceae richness was greatest in conventionally managed fields, while Glomeraceae richness was greatest in organic fields. While total AMF richness and root colonization did not differ between organic and conventionally managed fields, AMF community composition did; these differences were correlated with soil nitrate and shade. OTUs differing in relative abundance between conventionally managed and organic fields segregated into four groups: Gigasporaceae associated with high light and nitrate availability, Acaulosporaceae with high light and low nitrate availability, Acaulosporaceae and a single relative of Rhizophagus fasciculatus with shade and low nitrate availability, and Claroideoglomus/Glomus with conventionally managed fields but uncorrelated with shade and soil variables. The association of closely related taxa with similar shade and light availabilities is consistent with phylogenetic trait conservatism in AM fungi.
Asunto(s)
Micobioma , Micorrizas , Café , Costa Rica , Nitrógeno , Filogenia , Raíces de Plantas , Suelo , Microbiología del SueloRESUMEN
The structure and function of fungal communities in the coffee rhizosphere are influenced by crop environment. Because coffee can be grown along a management continuum from conventional application of pesticides and fertilizers in full sun to organic management in a shaded understory, we used coffee fields to hold host constant while comparing rhizosphere fungal communities under markedly different environmental conditions with regard to shade and inputs. We characterized the shade and soil environment in 25 fields under conventional, organic, or transitional management in two regions of Costa Rica. We amplified the internal transcribed spacer 2 (ITS2) region of fungal DNA from coffee roots in these fields and characterized the rhizosphere fungal community via high-throughput sequencing. Sequences were assigned to guilds to determine differences in functional diversity and trophic structure among coffee field environments. Organic fields had more shade, a greater richness of shade tree species, and more leaf litter and were less acidic, with lower soil nitrate availability and higher soil copper, calcium, and magnesium availability than conventionally managed fields, although differences between organic and conventionally managed fields in shade and calcium and magnesium availability depended on region. Differences in richness and community composition of rhizosphere fungi between organic and conventionally managed fields were also correlated with shade, soil acidity, and nitrate and copper availability. Trophic structure differed with coffee field management. Saprotrophs, plant pathogens, and mycoparasites were more diverse, and plant pathogens were more abundant, in organic than in conventionally managed fields, while saprotroph-plant pathogens were more abundant in conventionally managed fields. These differences reflected environmental differences and depended on region.IMPORTANCE Rhizosphere fungi play key roles in ecosystems as nutrient cyclers, pathogens, and mutualists, yet little is currently known about which environmental factors and how agricultural management may influence rhizosphere fungal communities and their functional diversity. This field study of the coffee agroecosystem suggests that organic management not only fosters a greater overall diversity of fungi, but it also maintains a greater richness of saprotrophic, plant-pathogenic, and mycoparasitic fungi that has implications for the efficiency of nutrient cycling and regulation of plant pathogen populations in agricultural systems. As well as influencing community composition and richness of rhizosphere fungi, shade management and use of fungicides and synthetic fertilizers altered the trophic structure of the coffee agroecosystem.
Asunto(s)
Coffea/microbiología , Hongos/aislamiento & purificación , Micobioma , Agricultura Orgánica , Raíces de Plantas/microbiología , Rizosfera , Costa Rica , Hongos/clasificación , Hongos/fisiologíaRESUMEN
Fertility traits, such as heifer pregnancy, are economically important in cattle production systems, and are therefore, used in genetic selection programs. The aim of this study was to identify single nucleotide polymorphisms (SNPs) using RNA-sequencing (RNA-Seq) data from ovary, uterus, endometrium, pituitary gland, hypothalamus, liver, longissimus dorsi muscle, and adipose tissue in 62 candidate genes associated with heifer puberty in cattle. RNA-Seq reads were assembled to the bovine reference genome (UMD 3.1.1) and analyzed in five cattle breeds; Brangus, Brahman, Nellore, Angus, and Holstein. Two approaches used the Brangus data for SNP discovery 1) pooling all samples, and 2) within each individual sample. These approaches revealed 1157 SNPs. These were compared with those identified in the pooled samples of the other breeds. Overall, 172 SNPs within 13 genes (CPNE5, FAM19A4, FOXN4, KLF1, LOC777593, MGC157266, NEBL, NRXN3, PEPT-1, PPP3CA, SCG5, TSG101, and TSHR) were concordant in the five breeds. Using Ensembl's Variant Effector Predictor, we determined that 12% of SNPs were in exons (71% synonymous, 29% nonsynonymous), 1% were in untranslated regions (UTRs), 86% were in introns, and 1% were in intergenic regions. Since these SNPs were discovered in RNA, the variants were predicted to be within exons or UTRs. Overall, 160 novel transcripts in 42 candidate genes and five novel genes overlapping five candidate genes were observed. In conclusion, 1157 SNPs were identified in 62 candidate genes associated with puberty in Brangus cattle, of which, 172 were concordant in the five cattle breeds. Novel transcripts and genes were also identified.
Asunto(s)
Pubertad/genética , Animales , Secuencia de Bases , Bovinos , Femenino , Fertilidad/genética , Genoma , Masculino , Polimorfismo de Nucleótido Simple , Embarazo , ARN/genética , Selección Genética , Análisis de Secuencia de ARN/métodos , Maduración SexualRESUMEN
Brahman cattle are important in tropical regions due to their ability to tolerate excessive heat and parasites. However, Brahman cattle exhibit lower carcass quality characteristics when compared to Bos taurus breeds. The objective of this study was to evaluate potential associations between single nucleotide polymorphisms (SNPs) in six candidate genes for carcass quality and composition traits in a population of Brahman and Brahman-influenced steers. Steers were evaluated through the American Brahman Breeders Association carcass evaluation project in Gonzales, Texas. Carcass traits measured included hot carcass weight, ribeye area, marbling score, yield grade, quality grade, dressing percent, and Warner-Bratzler shear force score. Six previously described candidate genes were chosen for SNP analysis based on their previous association with growth and carcass traits. Candidate genes utilized in the current study included calpastatin (CAST), calpain (CAPN3), thyroglobulin (TG), growth hormone, insulin growth factor 1, and adiponectin. Six unique SNPs from three candidate genes (TG, CAST, and CAPN3) were significantly associated (P < 0.001) with carcass quality traits (marbling score and quality grade). A genotypic effect was observed for all significant SNPs, with differing levels of performance observed for animals inheriting different genotypes. Although multiple SNPs in the current study were significantly (P < 0.001) associated with growth and carcass traits, they should be validated in larger populations prior to implementation in selection strategies.
Asunto(s)
Bovinos/genética , Carne/normas , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Adiponectina/genética , Animales , Proteínas de Unión al Calcio/genética , Calpaína/genética , Bovinos/crecimiento & desarrollo , Genotipo , Hormona del Crecimiento/genética , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Tiroglobulina/genéticaRESUMEN
A range of infestation levels of the whitefly Bemisia argentifolii Bellows & Perring were established across experimental field plots of cantaloupe by varying insecticide treatments to evaluate the relationships between whitefly density and crop yield and quality. High levels of whitefly adults and immatures were associated with significant reductions in fruit yield, a decrease in fruit size, and an increase in the percentage of fruits with sooty mold. Yield loss rates (kg/ha/adult or nymph) decreased in a nonlinear fashion with increasing whitefly numbers. Estimated economic injury levels varied as a function of whitefly density, whitefly stage, control cost, crop cultivar, and crop season. Estimates of economic injury levels for one ($31.2/ha), five ($156/ha), and 10 ($312/ha) insecticide treatments ranged from 0.02 to 0.39, from 0.12 to 1.96, and from 0.24 to 3.92 adults/leaf, and from 0.20 to 5.43, from 0.98 to 27.17, and from 1.97 to 54.35 nymphs/6.45 cm2, respectively.