Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ERJ Open Res ; 9(5)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37850212

RESUMEN

Background: The concentration of exhaled octane has been postulated as a reliable biomarker for acute respiratory distress syndrome (ARDS) using metabolomics analysis with gas chromatography and mass spectrometry (GC-MS). A point-of-care (POC) breath test was developed in recent years to accurately measure octane at the bedside. The aim of the present study was to validate the diagnostic accuracy of exhaled octane for ARDS using a POC breath test in invasively ventilated intensive care unit (ICU) patients. Methods: This was an observational cohort study of consecutive patients receiving invasive ventilation for at least 24 h, recruited in two university ICUs. GC-MS and POC breath tests were used to quantify the exhaled octane concentration. ARDS was assessed by three experts following the Berlin definition and used as the reference standard. The area under the receiver operating characteristic curve (AUC) was used to assess diagnostic accuracy. Results: 519 patients were included and 190 (37%) fulfilled the criteria for ARDS. The median (interquartile range) concentration of octane using the POC breath test was not significantly different between patients with ARDS (0.14 (0.05-0.37) ppb) and without ARDS (0.11 (0.06-0.26) ppb; p=0.64). The AUC for ARDS based on the octane concentration in exhaled breath using the POC breath test was 0.52 (95% CI 0.46-0.57). Analysis of exhaled octane with GC-MS showed similar results. Conclusions: Octane in exhaled breath has insufficient diagnostic accuracy for ARDS. This disqualifies the use of octane as a biomarker in the diagnosis of ARDS and challenges most of the research performed up to now in the field of exhaled breath metabolomics.

2.
Opt Express ; 16(26): 21641-6, 2008 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-19104595

RESUMEN

Light-emitting diodes (LEDs) will play a major role in future indoor illumination systems. In general, the generalized Lambertian pattern is widely used as the radiation pattern of a single LED. In this letter, we show that the illuminance distribution due to this Lambertian pattern, when projected onto a horizontal surface such as a floor, can be well approximated by a Gaussian function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA