Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 9: e10213, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33520431

RESUMEN

BACKGROUND: Post-menopausal osteoporosis is a common health problem worldwide, most commonly caused by estrogen deficiency. Most of the information regarding the skeletal effects of this disease relates to trabecular bone, while cortical bone is less studied. The purpose of this study was to evaluate the influence of estrogen deficiency on the structure and mechanical properties of cortical bone. METHODS: Eight ovariectomized (OVH) and eight intact (control) Sprague Dawley rats were used.Structural features of femoral cortical bone were studied by light microscopy, scanning electron microscopy and synchrotron-based microcomputer-tomography and their mechanical properties determined by nano-indentation. RESULTS: Cortical bone of both study groups contains two distinct regions: organized circumferential lamellae and disordered bone with highly mineralized cartilaginous islands. Lacunar volume was lower in the OVH group both in the lamellar and disorganized regions (182 ± 75 µm3 vs 232 ± 106 µm3, P < 0.001 and 195 ± 86 µm3 vs. 247 ± 106 µm3, P < 0.001, respectively). Lacunar density was also lower in both bone regions of the OVH group (40 ± 18 ×103 lacunae/mm3 vs. 47 ± 9×103 lacunae/mm3 in the lamellar region, P = 0.003 and 63 ± 18×103lacunae/mm3 vs. 75 ± 13×103 lacunae/mm3 in the disorganized region, P < 0.001). Vascular canal volume was lower in the disorganized region of the bone in the OVH group compared to the same region in the control group (P < 0.001). Indentation moduli were not different between the study groups in both bone regions. DISCUSSION: Changes to cortical bone associated with estrogen deficiency in rats require high-resolution methods for detection. Caution is required in the application of these results to humans due to major structural differences between human and rat bone.

2.
Chem Res Toxicol ; 33(5): 1250-1255, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32286059

RESUMEN

To better study the impact of nanoparticles on both in vitro and in vivo models, tissue distribution and cellular doses need to be described more closely. Here silver nanoparticles were visualized in alveolar macrophages by means of synchrotron radiation micro X-ray fluorescence spectroscopy (SR-µXRF) with high spatial resolution of 3 × 3 µm2. For the spatial allocation of silver signals to cells and tissue structures, additional elemental labeling was carried out by staining with eosin, which binds to protein and can be detected as bromine signal with SR-µXRF. The method was compatible with immunostaining of macrophage antigens. We found that the silver distribution obtained with SR-µXRF was largely congruent with distribution maps from a subsequent laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of the same tissue sites. The study shows a predominant, though not exclusive uptake of silver into alveolar macrophages in the rat lung, which can be modeled by a similar uptake in cultured alveolar macrophages. Advantages and limitations of the different strategies for measuring nanoparticle uptake at the single cell level are discussed.


Asunto(s)
Macrófagos/metabolismo , Nanopartículas del Metal/química , Plata/metabolismo , Animales , Línea Celular , Macrófagos/química , Espectrometría de Masas , Tamaño de la Partícula , Ratas , Plata/química , Espectrometría por Rayos X , Sincrotrones
3.
J Synchrotron Radiat ; 23(Pt 3): 769-76, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27140157

RESUMEN

A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ-2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 µm is achieved.

4.
Clin Oral Implants Res ; 27(9): 1178-86, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26508041

RESUMEN

OBJECTIVES: Dental peri-implantitis is characterized by a multifactorial etiology. The role of metal elements as an etiological factor for peri-implantitis is still unclear. The aim of this study was to investigate the incidence of metal elements in bone and mucosal tissues around dental Grade 4 CP titanium implants with signs of peri-implantitis in human patients. METHODS: In this prospective pilot study, all patients were enrolled consecutively in two study centers. Bone and soft tissue samples of patients with peri-implantitis with indication for explantation were analyzed for the incidence of different elements (Ca, P, Ti, Fe) by means of synchrotron radiation X-ray fluorescence spectroscopy (SRXRF) and polarized light microscopy (PLM). The existence of macrophages and lymphocytes in the histologic specimens was analyzed. RESULTS: Biopsies of 12 patients (seven bone samples, five mucosal samples) were included and analyzed. In nine of the 12 samples (75%), the SRXRF examination revealed the existence of titanium (Ti) and an associated occurrence with Iron (Fe). Metal particles were detected in peri-implant soft tissue using PLM. In samples with increased titanium concentration, lymphocytes were detected, whereas M1 macrophages were predominantly seen in samples with metal particles. CONCLUSION: Titanium and Iron elements were found in soft and hard tissue biopsies retrieved from peri-implantitis sites. Further histologic and immunohistochemical studies need to clarify which specific immune reaction metal elements/particles induce in dental peri-implant tissue.


Asunto(s)
Implantes Dentales/efectos adversos , Periimplantitis/etiología , Titanio/efectos adversos , Anciano , Proceso Alveolar/química , Femenino , Encía/química , Humanos , Hierro/efectos adversos , Hierro/análisis , Masculino , Microscopía de Polarización , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Espectrometría por Rayos X , Titanio/análisis
5.
J Synchrotron Radiat ; 21(Pt 6): 1296-304, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25343798

RESUMEN

Short-range order has been investigated in Zr69.5Cu12Ni11Al7.5 and Zr41.5Ti41.5Ni17 metallic glasses using X-ray absorption spectroscopy and ab initio molecular dynamics simulations. While both of these alloys are good glass formers, there is a difference in their glass-forming abilities (Zr41.5Ti41.5Ni17 > Zr69.5Cu12Ni11Al7.5). This difference is explained by inciting the relative importance of strong chemical order, icosahedral content, cluster symmetry and configuration diversity.

6.
Phys Chem Chem Phys ; 16(36): 19694-701, 2014 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-25113070

RESUMEN

Rigid rod-type metallo-supramolecular coordination polyelectrolytes with Fe(II) centres (Fe-MEPEs) are produced via the self-assembly of the ditopic ligand 1,4-bis(2,2':6',2''-terpyridine-4'-yl)benzene (tpy-ph-tpy) and Fe(II) acetate. Fe-MEPEs exhibit remarkable electrochromic properties; they change colour from blue to transparent when an electric potential is applied. This electrochemical process is generally reversible. The blue colour in the ground state is a result of a metal-to-ligand charge transfer at the Fe(II) centre ion in a quasi-octahedral geometry. When annealed at temperatures above 100 °C, the blue colour turns into green and the formerly reversible electrochromic properties are lost, even after cooling down to room temperature. The thermally induced changes in the Fe(II) coordination sphere are investigated in situ during annealing of a solid Fe-MEPE using X-ray absorption fine structure (XAFS) spectroscopy. The study reveals that the thermally induced transition is not accompanied by a redox process at the Fe(II) centre. From the detailed analysis of the XAFS spectra, the changes are attributed to structural changes in the coordination sphere of the Fe(II) site. In the low temperature state, the Fe(II) ion rests in a quasi-octahedral coordination environment surrounded by six nitrogen atoms of the pyridine rings. The axial Fe-N bond length is 1.94 Å, while the equatorial bond length amounts to 1.98 Å. In the high temperature state, the FeN6-site exhibits a distortion with the axial Fe-N bonds being shortened to 1.88 Å and the equatorial Fe-N bonds being elongated to 2.01 Å.

8.
Faraday Discuss ; 162: 45-55, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24015575

RESUMEN

Well-defined and facetted bimetallic gold-palladium nanoalloys have been synthesized and anchored in spherical polyelectrolyte brushes (SPB) as composite particles (AuPd@SPB). These particles are better catalysts in aqueous phase than the pure metals. The atomistic arrangement of these nanoalloys has been analysed by extended X-ray absorption fine structure (EXAFS) spectroscopy at the Au-L3 and the Pd-K absorption edge. The samples with high amounts of gold appear as almost statistically mixed random alloys. Alloy compositions with less gold show slight enrichment of Pd at the surface of the particle. In addition, signals of non-metallic palladium appear at the Pd-K edge which indicate the presence of the Pd2+ species in addition to metallic palladium. The relation of these structural features to the catalytic activity is discussed.

9.
Int J Oral Maxillofac Implants ; 28(1): 44-50, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23377046

RESUMEN

PURPOSE: The implant-abutment connection of a two-piece dental implant exhibits complex micromechanical behavior. A microgap is evident at the implant-abutment interface, even in the virgin state, and its width varies when an external mechanical load is applied. MATERIALS AND METHODS: This study used high-resolution synchrotron-based radiography in combination with hard x-ray phase-contrast mode to visualize this gap and estimate its size. Commercially available implants with different internal conical implant-abutment connections were imaged. Pairs of implants were imaged as manufactured (new) and after fatigue loading (5 million cycles up to 120 N). Then, different static loads were applied at different angles relative to the implant-abutment assemblies, and the implant-abutment microgaps were measured and compared. RESULTS: Microgaps existed in all systems. Fatigue loading extended the size of the microgap and increased the possibility of micromovement of the implant-abutment complex. The cone angle of the connection also influenced the stability of the abutment, with flatter cones appearing to be more stable. CONCLUSION: Cyclic loading at medium force (120 N) induces plastic deformation of titanium implants and abutments.


Asunto(s)
Diseño de Implante Dental-Pilar , Implantes Dentales , Análisis del Estrés Dental/métodos , Radiografía Dental Digital/métodos , Estrés Mecánico , Titanio , Pilares Dentales , Proyectos Piloto , Sincrotrones , Soporte de Peso
10.
Anal Chem ; 85(3): 1650-6, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23234594

RESUMEN

Fingerprinting ancient gold work requires the use of nondestructive techniques with high spatial resolution (down to 25 µm) and good detection limits (micrograms per gram level). In this work experimental setups and protocols for synchrotron radiation induced X-ray fluorescence (SRXRF) at the BAMline of the Berlin electron storage ring company for synchrotron radiation (BESSY) in Berlin for the measurement of characteristic trace elements of gold are compared considering the difficulties, shown in previous works, connected to the quantification of Pt. The best experimental conditions and calculation methods were achieved by using an excitation energy of 11.58 keV, a silicon drift chamber detector (SDD) detector, and pure element reference standards. A detection limit of 3 µg/g has been reached. This newly developed method was successfully applied to provenancing the Xiongnu gold from the Gol Mod necropolis, excavated under the aegis of the United Nations Educational, Scientific and Cultural Organization (UNESCO). The composition of the base alloys and the presence of Pt and Sn showed that, contrary to what is expected, the gold foils from the first powerful empire of the steppes along the Great Wall were produced with alluvial gold from local placer deposits located in Zaamar, Boroo, and in the Selenga River.

11.
Micron ; 43(10): 1060-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22633854

RESUMEN

The study was aimed at demonstrating a true cellular resolution for articular cartilage using synchrotron radiation-based X-ray microcomputed tomography (SR-µCT) with a sample-specific optimization of the phase contrast. The generated tomographic data were later used to prepare a matching histological sample from the full volume specimen. We used highly coherent and monochromatic X-rays from a synchrotron source to image a tissue sample of bovine articular cartilage after deparaffinization. Phase contrast enhancement was achieved by using five different sample to detector distances for the same X-ray energy. After tomography, the sample was re-embedded into resin while retaining a dedicated sample orientation for subsequent sectioning and polishing, which was conducted until a previously defined spatial position was achieved. The protocol for resin embedding was developed to inhibit morphological changes during embedding. Giemsa staining was applied for better structural and morphological discrimination. Data from tomography and lightmicroscopy were exactly matched and finally compared to results from FIB/SEM imaging. Image detail was achieved at a single cell resolution. Image detail was achieved at a single cell resolution, which has been estimated to be 0.833µm/voxel in the tomographic data. SR-µCT with optimized phase contrast properties represents a method to investigate biological tissues in certain areas of interest, where true cellular resolution or enhanced volumetric imaging is needed. In this study, we demonstrate that this method can compete with conventional histology using light microscopy but even surpasses it due to the possibility of retrieving volumetric data.


Asunto(s)
Cartílago Articular/ultraestructura , Microtomografía por Rayos X , Animales , Técnica de Desmineralización de Huesos , Cartílago Articular/diagnóstico por imagen , Bovinos , Condrocitos/ultraestructura , Matriz Extracelular/ultraestructura , Microscopía Electrónica de Rastreo , Sincrotrones
12.
Environ Sci Technol ; 45(22): 9799-805, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21970732

RESUMEN

With the increase in the awareness of the public in the environmental impact of oil shale utilization, it is of interest to reveal the mobility of potentially toxic trace elements in spent oil shale. Therefore, the Cr and As oxidation state in a representative Jordanian oil shale sample from the El-Lajjoun area were investigated upon different lab-scale furnace treatments. The anaerobic pyrolysis was performed in a retort flushed by nitrogen gas at temperatures in between 600 and 800 °C (pyrolytic oil shale, POS). The aerobic combustion was simply performed in porcelain cups heated in a muffle furnace for 4 h at temperatures in between 700 and 1000 °C (burned oil shale, BOS). The high loss-on-ignition in the BOS samples of up to 370 g kg(-1) results from both calcium carbonate and organic carbon degradation. The LOI leads to enrichment in the Cr concentrations from 480 mg kg(-1) in the original oil shale up to 675 mg kg(-1) in the ≥ 850 °C BOS samples. Arsenic concentrations were not much elevated beyond that in the average shale standard (13 mg kg(-1)). Synchrotron-based X-ray absorption near-edge structure (XANES) analysis revealed that within the original oil shale the oxidation states of Cr and As were lower than after its aerobic combustion. Cr(VI) increased from 0% in the untreated or pyrolyzed oil shale up to 60% in the BOS ash combusted at 850 °C, while As(V) increased from 64% in the original oil shale up to 100% in the BOS ash at 700 °C. No Cr was released from original oil shale and POS products by the European compliance leaching test CEN/TC 292 EN 12457-1 (1:2 solid/water ratio, 24 h shaking), whereas leachates from BOS samples showed Cr release in the order of one mmol L(-1). The leachable Cr content is dominated by chromate as revealed by catalytic adsorptive stripping voltammetry (CAdSV) which could cause harmful contamination of surface and groundwater in the semiarid environment of Jordan.


Asunto(s)
Arsénico/química , Cromo/química , Petróleo/análisis , Calor , Jordania , Oxidación-Reducción
13.
Anal Bioanal Chem ; 398(5): 1967-72, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20848088

RESUMEN

The structure of nanoparticles typically differs from its bulk counterpart. Predominantly, the structures of gold nanoparticles have been under exceedingly intense discussion since the discovery of their high catalytic activity. We found an increasing bond length contraction with decreasing particle size for citrate-stabilized gold nanoparticles in aqueous solution as determined by in situ extended X-ray absorption fine structure (EXAFS) spectroscopy. Particle sizes and size distributions were determined by small-angle X-ray scattering. The analysis of the obtained EXAFS spectra employing ab initio calculations reveals that the Au-Au bond length undergoes a contraction of 2 pm for nanoparticles with a radius of 2.9 nm. NIST reference material RM 8011 gold nanoparticles with a radius of 4.4 nm exhibit a smaller contraction of approximately 1 pm. Finally, gold atoms in RM 8013 particles with a radius of 25.7 nm show distances of 288 pm--identical to the distance in gold foil--and exhibits bulk-like properties. The observed bond length contraction of gold nanoparticles in solution is significantly smaller than previously reported for gold nanoparticle deposited on surfaces, which is up to 15 pm. This indicates that the bond length contraction effect of "free" and "surface-immobilized" nanoparticles differ fundamentally. Such difference could be essential for the understanding of nanoparticle-supported catalysis.

14.
Langmuir ; 26(8): 5889-94, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20085232

RESUMEN

A great challenge in the production of nanoparticles with defined sizes and properties is to control their growth in situ. We developed a dedicated combined small-angle X-ray scattering (SAXS) and X-ray absorption spectroscopy (XAS) setup to monitor nanoparticle formation in solution. The capabilities of simultaneously deriving particle sizes and oxidation states of atoms/ions are illustrated for the formation of spherical gold nanoparticles by the reduction of hydrogen tetrachloroaureate (HAuCl(4)). Particles with initial radii of 4.60 +/- 0.10 nm and final radii of 5.67 +/- 0.10 nm were produced in a levitated droplet with a volume of 4 microL. An ethylene oxide/propylene oxide triblock copolymer PEO-PPO-PEO (Pluronic F-127) functions as reducing agent and colloidal stabilizer. XANES shows in situ how the gold was reduced in the droplet from Au(III) to Au(0), and simultaneously SAXS recorded the size distribution of the formed nanoparticles. It is shown that the final particle number is reached quickly. Thereafter, only the particles' sizes increase. Comparison of XANES and SAXS shows that the quantity of Au(0) is higher than the quantity of gold located in the nanoparticles while the particles are growing. Finally, all the Au(0) is found in the nanoparticles. We tentatively attribute this finding to the pseudo crown ether effect of the polymer surfactant that kinetically stabilizes gold atoms when formed from gold ions within their protecting cavity. A simple "burst" mechanism for the gold nanoparticle formation is the consequence. The possibility of an inhomogeneous particles structure with an enhanced density near the particle surface is discussed.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Polímeros/química , Polietilenglicoles/química , Glicoles de Propileno/química , Dispersión del Ángulo Pequeño , Espectroscopía de Absorción de Rayos X
15.
J R Soc Interface ; 7(42): 49-59, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19324670

RESUMEN

Current light microscopic methods such as serial sectioning, confocal microscopy or multiphoton microscopy are severely limited in their ability to analyse rather opaque biological structures in three dimensions, while electron optical methods offer either a good three-dimensional topographic visualization (scanning electron microscopy) or high-resolution imaging of very thin samples (transmission electron microscopy). However, sample preparation commonly results in a significant alteration and the destruction of the three-dimensional integrity of the specimen. Depending on the selected photon energy, the interaction between X-rays and biological matter provides semi-transparency of the specimen, allowing penetration of even large specimens. Based on the projection-slice theorem, angular projections can be used for tomographic imaging. This method is well developed in medical and materials science for structure sizes down to several micrometres and is considered as being non-destructive. Achieving a spatial and structural resolution that is sufficient for the imaging of cells inside biological tissues is difficult due to several experimental conditions. A major problem that cannot be resolved with conventional X-ray sources are the low differences in density and absorption contrast of cells and the surrounding tissue. Therefore, X-ray monochromatization coupled with a sufficiently high photon flux and coherent beam properties are key requirements and currently only possible with synchrotron-produced X-rays. In this study, we report on the three-dimensional morphological characterization of articular cartilage using synchrotron-generated X-rays demonstrating the spatial distribution of single cells inside the tissue and their quantification, while comparing our findings to conventional histological techniques.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Cartílago Articular/ultraestructura , Condrocitos/diagnóstico por imagen , Condrocitos/ultraestructura , Intensificación de Imagen Radiográfica/métodos , Sincrotrones , Tomografía Computarizada por Rayos X/métodos , Animales , Bovinos , Células Cultivadas , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA