Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 271(Pt 1): 132614, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795892

RESUMEN

This study addresses the optimization of the nanolignin preparation method from the areca leaf sheath (ALS) by a mechanical process using a high shear homogenizer at 13,000-16,000 rpm for 1-4 h and its application in enhancing the performance of ultralow molar ratio urea-formaldehyde (UF) adhesive. Response surface methodology (RSM) with a central composite design (CCD) model was used to determine the optimum nanolignin preparation method. The mathematical model obtained was quadratic for the particle size response and linear for the zeta potential response. Under the optimum conditions, a speed of 16,000 rpm for 4 h resulted in a particle size of 227.7 nm and a zeta potential of -18.57 mV with a high desirability value of 0.970. FE-SEM revealed that the characteristic changes of lignin to nanolignin occur from an irregular or nonuniform shape to an oval shape with uniform particles. Nanolignin was introduced during the addition reaction of UF resin synthesis. UF modified with nanolignin (UF-NL) was analyzed for its adhesive characteristics, functional groups, crystallinity, and thermomechanical properties. The UF-NL adhesive had a slightly greater solid content (73.23 %) than the UF adhesive, a gelation time of 4.10 min, and a viscosity of 1066 mPa.s. The UF-NL adhesive had similar functional groups as the UF adhesive, with a lower crystallinity of 59.73 %. Compared with the control plywood which has a tensile shear strength value of 0.79 MPa, the plywood bonded with UF-NL had a greater tensile shear strength of 1.07 MPa, with a lower formaldehyde emission of 0.065 mg/L.


Asunto(s)
Adhesivos , Formaldehído , Urea , Formaldehído/química , Adhesivos/química , Urea/química , Hojas de la Planta/química , Tamaño de la Partícula , Lignina/química
2.
Polymers (Basel) ; 14(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35160351

RESUMEN

Biocomposites reinforced with natural fibers represent an eco-friendly and inexpensive alternative to conventional petroleum-based materials and have been increasingly utilized in a wide variety of industrial applications due to their numerous advantages, such as their good mechanical properties, low production costs, renewability, and biodegradability. However, these engineered composite materials have inherent downsides, such as their increased flammability when subjected to heat flux or flame initiators, which can limit their range of applications. As a result, certain attempts are still being made to reduce the flammability of biocomposites. The combustion of biobased composites can potentially create life-threatening conditions in buildings, resulting in substantial human and material losses. Additives known as flame-retardants (FRs) have been commonly used to improve the fire protection of wood and biocomposite materials, textiles, and other fields for the purpose of widening their application areas. At present, this practice is very common in the construction sector due to stringent fire safety regulations on residential and public buildings. The aim of this study was to present and discuss recent advances in the development of fire-resistant biocomposites. The flammability of wood and natural fibers as material resources to produce biocomposites was researched to build a holistic picture. Furthermore, the potential of lignin as an eco-friendly and low-cost FR additive to produce high-performance biocomposites with improved technological and fire properties was also discussed in detail. The development of sustainable FR systems, based on renewable raw materials, represents a viable and promising approach to manufacturing biocomposites with improved fire resistance, lower environmental footprint, and enhanced health and safety performance.

3.
Polymers (Basel) ; 13(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34960839

RESUMEN

Asian countries have abundant resources of natural fibers, but unfortunately, they have not been optimally utilized. The facts showed that from 2014 to 2020, there was a shortfall in meeting national demand of over USD 2.75 million per year. Therefore, in order to develop the utilization and improve the economic potential as well as the sustainability of natural fibers, a comprehensive review is required. The study aimed to demonstrate the availability, technological processing, and socio-economical aspects of natural fibers. Although many studies have been conducted on this material, it is necessary to revisit their potential from those perspectives to maximize their use. The renewability and biodegradability of natural fiber are part of the fascinating properties that lead to their prospective use in automotive, aerospace industries, structural and building constructions, bio packaging, textiles, biomedical applications, and military vehicles. To increase the range of applications, relevant technologies in conjunction with social approaches are very important. Hence, in the future, the utilization can be expanded in many fields by considering the basic characteristics and appropriate technologies of the natural fibers. Selecting the most prospective natural fiber for creating national products can be assisted by providing an integrated management system from a digitalized information on potential and related technological approaches. To make it happens, collaborations between stakeholders from the national R&D agency, the government as policy maker, and academic institutions to develop national bioproducts based on domestic innovation in order to move the circular economy forward are essential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA