Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Luminescence ; 30(1): 67-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24890934

RESUMEN

The spectroscopic, electrochemical and coreactant electrogenerated chemiluminescence (ECL) properties of Ir(ppy)3 (where ppy = 2-phenylpyridine) have been obtained in aqueous buffered (KH2PO4), 50 : 50 (v/v) acetonitrile-aqueous buffered (MeCN-KH2PO4) and 30% trifluoroethanol (TFE) solutions. Tri-n-propylamine was used as the oxidative-reductive ECL coreactant. The photoluminescence (PL) efficiency (ϕem) of Ir(ppy)3 in TFE (ϕem ≈ 0.029) was slightly higher than in 50 : 50 MeCN-KH2PO4 (ϕem ≈ 0.0021) and water (ϕem ≈ 0.00016) compared to a Ru(bpy)32+ standard solution in water (Φem ≈ 0.042). PL and ECL emission spectra were nearly identical in all three solvents, with dual emission maxima at 510 and 530 nm. The similarity between the ECL and PL spectra indicate that the same excited state is probably formed in both experiments. ECL efficiencies (ϕecl) in 30% TFE solution (ϕecl = 0.0098) were higher than aqueous solution (ϕecl = 0.00092) system yet lower than a 50% MeCN-KH2PO4 solution (ϕecl = 0.0091).


Asunto(s)
Acetonitrilos/química , Técnicas Electroquímicas , Luminiscencia , Compuestos Organometálicos/análisis , Trifluoroetanol/química , Agua/química
2.
Analyst ; 137(12): 2766-9, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22552012

RESUMEN

The reaction of various [Os(L)(2)(L')](2+) complexes (where L and L' are phenanthroline, diphosphine or diarsine ligands) and organic reducing agents after chemical or electrochemical oxidation of the reactants produces an emission of light corresponding to MLCT transitions. In certain instances, the emission was greater than that of [Ru(bipy)(3)](2+), but the relative signals were dependent on many factors, including reagent concentration, mode of oxidation, reducing agent and the sensitivity of the photodetector over the wavelength range.

3.
Dalton Trans ; 39(6): 1586-90, 2010 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-20104321

RESUMEN

The spectroscopy, electrochemistry and electrogenerated chemiluminescence (ECL) of five osmium(ii) polypyridyl systems containing either phosphine or arsine chelating ligands are reported. ECL is generated in acetonitrile and mixed CH(3)CN-H(2)O (50 : 50 v/v) solutions with tri-n-propylamine (TPrA) as an oxidative-reductive coreactant. ECL efficiencies (phi(ECL) = photons emitted per redox event) between 0.15 and 8.43 are obtained using Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) as a relative standard (phi(ECL) = 1). The ECL efficiency is dependent on both the nature of the ligands and the solvent media. The ECL spectra are identical to photoluminescence spectra indicating formation of the same excited states in both ECL and PL.

4.
J Phys Chem A ; 112(37): 8529-33, 2008 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-18729443

RESUMEN

The electrogenerated chemiluminescence (ECL) of 9,10-diphenylanthracene (DPA), rubrene, and anthracene has been studied in fluorinated aromatic solvents. Mixed annihilation ECL between aromatic luminophores and quinones was observed in solvent systems containing acetonitrile and either benzene, benzotrifluoride, 3-fluorobenzotrifluoride, or 1,3-bis(trifluoromethyl)benzene. Increases in ECL efficiency (phi ecl, photons generated per redox event) correlated with decreasing solvent polarity when 1,4-benzoquinone was used as a nonemitting ECL partner. However, opposite results were observed using 1,4-naphthaoquinone (NQ) as a nonemitting partner. phi ecl also correlated with radical anion stability of NQ in these solvent systems, as indicated by reverse/forward current ratios ( I r/ I f), suggesting noncovalent interactions between the solvent and the nonemitting ECL partner. Specifically, the reaction of an aromatic luminophore with 1,4-naphthoquinone in acetonitrile/benzotrifluoride showed a 1.03-1.63-fold increases in ECL efficiency over that of acetonitrile/benzene. Slight blue shifts ( approximately 3 nm) in photoluminescence and ECL emissions were seen as solvent polarity increased. Reaction enthalpies of each system were estimated using half-wave potentials of oxidation and reduction and were found to correlate well with emission energy.


Asunto(s)
Antracenos/química , Hidrocarburos Aromáticos/química , Hidrocarburos Fluorados/química , Luminiscencia , Naftacenos/química , Electroquímica , Mediciones Luminiscentes , Estructura Molecular , Solventes/química , Espectrofotometría Ultravioleta , Factores de Tiempo
5.
Anal Chem ; 79(16): 6404-9, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17602674

RESUMEN

The electrochemistry, UV-vis absorption, photoluminescence (PL), and coreactant electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (where bpy=2,2'-bipyridine) have been obtained in a series of hydroxylic solvents. The solvents included fluorinated and nonfluorinated alcohols and alcohol/water mixtures. Tri-n-propylamine was used as the oxidative-reductive ECL coreactant. Blue shifts of up to 30 nm in PL emission wavelength maximums are observed compared to a Ru(bpy)3(2+)/H2O standard due to interactions of the polar excited state (i.e., *Ru(bpy)3(2+)) with the solvent media. For example, Ru(bpy)3(2+) in water has an emission maximum of 599 nm while in the more polar hexafluoropropanol and trifluoroethanol it is 562 and 571 nm, respectively. ECL spectra are similar to PL spectra, indicating the same excited state is formed in both experiments. The difference between the electrochemically reversible oxidation (Ru(bpy)3(2+/3+)) and first reduction (Ru(bpy)2(2+/1+)) correlates well with the energy gap observed in the luminescence experiments. Although the ECL is linear in all solvents with [Ru(bpy)3(2+)] ranging from 100 to 0.1 nm, little correlation between the polarity of the solvent and the ECL efficiency (phiecl=number of photons per redox event) was observed. However, dramatic increases in phiecl ranging from 6- to 270-fold were seen in mixed alcohol/water solutions.

6.
Dalton Trans ; (37): 4461-4, 2006 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16981020

RESUMEN

The spectroscopy, electrochemistry, and electrogenerated chemiluminescence (ECL) of [(q)(qH)Li]x (qH=8-hydroxyquinolinato) and [(Meq)(MeqH)Li]x (MeQH=2-methyl-8-hydroxyquinolinato) have been investigated. In both acetonitrile and aqueous solutions, [(q)(qH)Li]x and [(Meq)(MeqH)Li]x have absorption maxima at 320 and 309 nm, respectively. When excited at these wavelengths, the complexes emit around 500 nm (blue-green) in acetonitrile. Photoluminescence efficiencies (phiem) were 0.036 for [(q)(qH)Li]x and 0.012 for [(Meq)(MeqH)Li]x when compared to Ru(bpy)3(2+) (bpy=2,2'-bipyridine) with phiem=0.042. No photoluminescence was observed in aqueous media. The complexes show irreversible oxidative electrochemistry and quasi-reversible reductions in acetonitrile. ECL efficiencies (phiecl) were 0.097 for [(q)(qH)Li]x and 0.080 for [(Meq)(MeqH)Li]x when compared to Ru(bpy)(3)2+ (phiecl=1) in aqueous buffered solution and 0.035 for [(q)(qH)Li]x and 0.028 for [(Meq)(MeqH)Li]x in acetonitrile (0.05 M tri-n-propylamine (TPrA) as an oxidative-reductive ECL co-reactant). The ECL peaks at a potential corresponding to oxidation of both the TPrA and [(q)(qH)Li]x or [(Meq)(MeqH)Li]x. Also, qualitative studies using transmission filters suggest that both complexes emit ECL in approximately the same blue-green region as their photoluminescence, indicating that the same excited state is formed in both experiments.

7.
Luminescence ; 21(2): 72-6, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16211541

RESUMEN

The spectroscopic and electrochemiluminescence (ECL) properties of dipicolinic acid (DPA), (bpy)(2)Ru(2+) (bpy = 2,2'-bipyridine) and the species formed when DPA and (bpy)(2)Ru(2+) [abbreviated to (bpy)(2)Ru(DPA)(+)] are allowed to react are reported. The UV-Vis absorption maxima for (bpy)(2)Ru(2+) and (bpy)(2)Ru(DPA)(+) are 493 and 475 nm, respectively, indicating the in situ formation of a complex between DPA and (bpy)(2)Ru(2+). DPA, (bpy)(2)Ru(2+) and (bpy)(2)Ru(DPA)(+) display ECL upon oxidation in the presence of the oxidative-reductive co-reactant tri-n-propylamine (TPrA). The ECL of (bpy)(2)Ru(DPA)(+) is at least two-fold higher than either of the parent species. An ECL spectrum of (bpy)(2)Ru(DPA)(+) displays a peak maximum 40 nm red-shifted from the photoluminescence peak maximum, suggesting that the excited state formed electrochemically is different from that formed spectroscopically.


Asunto(s)
Luminiscencia , Mediciones Luminiscentes/métodos , Compuestos Organometálicos/química , Ácidos Picolínicos/química , Rutenio/química , Absorción , Electroquímica/métodos , Estructura Molecular , Compuestos Organometálicos/síntesis química , Fotoquímica/métodos , Sensibilidad y Especificidad
8.
Luminescence ; 20(2): 76-80, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15768375

RESUMEN

Three ortho-metallated iridium complexes whose emission maxima fall in different regions of the electromagnetic spectrum were bound in either Nafion or poly(9-vinylcarbazole) and their electrogenerated chemiluminescence (ECL) reported. The reaction of F(Ir)pic [bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)-iridium III] with the oxidative-reductive co-reactant tri-n-propylamine (TPrA) resulted in ECL when the iridium complex was bound in Nafion. No significant ECL was observed for (btp)(2)Ir(acac) (bis[2,(2'-benzothienyl)-pyridinato-N,C3'](acetylacetonate)Ir(III)), and Ir(ppy)(3) (where ppy = 2-phenylpyridine) under these conditions. However, all three compounds displayed ECL with TPrA when bound in poly(9-vinylcarbazole).


Asunto(s)
Fenómenos Electromagnéticos , Iridio/química , Luminiscencia , Compuestos Organometálicos/química , Polímeros/química , Cationes , Electroquímica , Electrodos , Polímeros de Fluorocarbono/química , Oxidación-Reducción , Propilaminas/química , Factores de Tiempo
10.
Anal Chem ; 75(5): 1102-5, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12641229

RESUMEN

The electrochemiluminescence (ECL) of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution is reported. ECL is generated by complexing aluminum ions with the chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQS) to form Al(HQS)3, followed by oxidation in the presence of tri-n-propylamine (TPrA). The ECL intensity peaks a potential corresponding to oxidation of both TPrA and Al(HQS)3, and the ECL emission spectrum (lambda(max) = 499 nm) matches the photoluminescence emission spectrum, indicating that the emission is from a Al(HQS)3* excited state. ECL efficiencies (phi(ecl), photons generated per redox event) of 0.002 using Ru(bpy)3(2+) (phi(ecl) = 1) as relative standard. Conditions for ECL emission were optimized and used to generate a calibration curve that was linear over the 7 x 10(-6)-4 x 10(-4) M (5-281 mg/L (ppm)) range with a theoretical limit of detection of 1 ppm. The ECL of several metal ions other than aluminum with HQS and effects on Al(HQS)3 ECL were also examined.

11.
Anal Chem ; 75(3): 601-4, 2003 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-12585490

RESUMEN

The effects of the nonionic surfactant Triton X-100 (poly(ethylene glycol) tert-octylphenyl ether) on the properties of tris(2-phenylpyridine)iridium(III) (Ir(ppy)3, where ppy = 2-phenylpyridine, electrochemiluminescence (ECL) have been investigated. Anodic oxidation of Ir(ppy)3 produces ECL in the presence of tri-n-propylamine (TPrA) in aqueous surfactant solution. Increases in ECL efficiency (> or = 10-fold) and TPrA oxidation current (> or = 2.0-fold) have been observed in surfactant media. The data support adsorption of surfactant on the electrode surface, thus facilitating TPrA and Ir(ppy)3 oxidation and leading to higher ECL efficiencies.

12.
Analyst ; 127(11): 1492-4, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12475040

RESUMEN

Changes in electrochemiluminescence (ECL) properties of a ruthenium polyazine compound containing a crown-ether moiety have been investigated in aqueous buffered solution. The electrochemistry, photophysics and ECL of (bpy)2Ru(AZA-bpy)2+ [bpy = 2,2'-bipyridine; AZA-bpy = 4-(N-aza-18-crown-6-methyl-2,2'-bipyridine)] in the presence of Pb2+, Hg2+, Cu2+ and Ag+ are reported. Oxidation of (bpy)2Ru(AZA-bpy)2+ produces ECL in the presence of tri-n-propylamine (TPrA; 0.2 M KH2PO4). Increases in ECL efficiency (photons generated per redox event) greater than 2-fold have been observed that depend on both the concentration and nature of the metal ion, allowing the determination of ions not directly involved in the ECL reaction sequence.

13.
Anal Chem ; 74(13): 3157-9, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12141677

RESUMEN

The electrochemiluminescence (ECL) of Os(phen)2(dppene)2+ (phen = 1,10-phenanthroline and dppene = bis(diphenylphosphino)ethene) is reported in mixed CH3CN/H2O (50:50 v/v) and aqueous (0.1 M KH2PO4) solutions with tri-n-propylamine (TPrA) as an oxidative-reductive coreactant. ECL efficiencies (phi(ecl) = photons emitted/redox event) of 2.0 in aqueous, and 0.95 in mixed for Os(phen)2(dppene)2+ were obtained using Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) as a relative standard (phi(ecl) = 1). Photoluminescence (PL) efficiencies of 0.094 and 0.053 were obtained in aqueous and mixed solutions, respectively, as compared to Ru(bpy)3(2+) (phi(em) = 0.042). The ECL spectra were identical to photoluminescence spectra (lambda(max) approximately 584 nm), indicating formation of the same metal-to-ligand (MLCT) excited states in both ECL and PL. The ECL is linear over several orders of magnitude in aqueous and mixed solution, with theoretical detection limits (blank plus three times the standard deviation of the noise) of 16.9 nM in H2O and 0.29 nM in CH3CN/H2O (50:50 v/v).

14.
Anal Chem ; 74(6): 1340-2, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11922301

RESUMEN

The electrochemiluminescence (ECL) of Ir(ppy)3 (ppy = 2-phenylpyridine) is reported in acetonitrile (CH3CN), mixed CH3CN/H20 (50:50 v/v), and aqueous (0.1 M KH2PO4) solutions with tri-n-propylamine as an oxidative-reductive coreactant. ECL efficiencies (phi(ecl), photons emitted per redox event) of 0.00092 in aqueous, 0.0044 in mixed, and 0.33 in CH3CN solutions for Ir(ppy)3 were obtained using Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) as a relative standard (phi(ecl) = 1). Photoluminescence (PL) efficiencies of 0.039, 0.050, and 0.069 were obtained in aqueous, mixed, and acetonitrile solutions, respectively, compared to Ru(bpy)3(2+) (phi(em) = 0.042). The ECL spectra were identical to photoluminescence spectra (lambda(max) approximately equal to 517 nm), indicating formation of the same metal-to-ligand (MLCT) excited states in both ECL and PL. The ECL is linear over several orders of magnitude in mixed and acetonitrile solution with theoretical detection limits (blank plus three times the standard deviation of the noise) of 1.23 nM in CH3CN and 0.23 microM in CH3CN/ H20 (50:50 v/v).

15.
Anal Chem ; 74(3): 547-50, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11838674

RESUMEN

The effects of metal ions on the electrochemiluminescence (ECL) properties of (bpy)2Ru(AZA-bpy) (bpy = 2,2'-bipyridine; AZA-bpy = 4-(N-aza-18-crown-6-methyl-2,2'-bipyridine) have been investigated. The electrochemistry, photophysics and ECL of Ru(bpy)3(2+) in the presence of Pb2+, Hg2+, Cu2+, and K+ are reported. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine (TPrA) in 50:50 (v/v) CH3CN:H2O solution. Increases in ECL efficiency (photons generated per redox event) up to 20-fold that depend on both the concentration and nature of the metal ion have been observed, making this an interesting system for electrochemiluminescence metal ion sensing.

16.
Analyst ; 127(1): 125-8, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11827378

RESUMEN

The effects of electron withdrawing and electron donating groups on the electrochemiluminescent (ECL) properties of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+) where bpy = 2,2'-pyridine) are reported. The electrochemistry, photophysics and ECL of (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+ (DC = 4,4'-dicarboxy-2,2'-bipyridine; DM = 4,4'-dimethyl-2,2'-bipyridine) have been studied relative to Ru(bpy)3(2+) in 50:50 (v/v) acetonitrile(CH3CN):H2O (0.1 M KH2PO4), and aqueous solutions. Furthermore, the effects of Triton X-100 (polyethylene glycol tert-octylphenyl ether) on the electrochemical, spectroscopic and ECL properties of these compounds are reported. The anodic oxidation of Ru(bpy)3(2+), (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+ produces ECL in the presence of tri-n-propylamine (TPrA) in all solvent systems. ECL efficiencies (phi(ecl), photons produced per redox event) of 0.73 and 0.84 for (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+ were obtained in aqueous buffered solution, using Ru(bpy)3(2+) as a relative standard (phi(ecl) = 1.0). Addition of 0.4 mM Triton X-100 results in a greater than 2-fold increase in ECL efficiences (i.e., 3.8, 2.4 and 2.3 for Ru(bpy)3(2+), (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+, respectively) using aqueous Ru(bpy)3(2+) containing no surfactant as standard (phi(ecl) = 1.0). ECL efficiencies of 27.4, 16.5 and 26.1 were found in 50:50 (v/v) CH3CN:H2O (0.1 M KH2PO4) for Ru(bpy)3(2+), (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+, respectively, using aqueous Ru(bpy)3(2+) containing no surfactant as standard (phi(ecl) = 1.0). Detailed studies support adsorption of surfactant on the electrode surface, thus facilitating TPrA and ruthenium oxidation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA