Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39053461

RESUMEN

Activation of procaspase-8 in the death effector domain (DED) filaments of the death-inducing signaling complex (DISC) is a key step in apoptosis. In this study, a rationally designed cell-penetrating peptide, DEDid, was engineered to mimic the h2b helical region of procaspase-8-DED2 containing a highly conservative FL motif. Furthermore, mutations were introduced into the DEDid binding site of the procaspase-8 type I interface. Additionally, our data suggest that DEDid targets other type I DED interactions such as those of FADD. Both approaches of blocking type I DED interactions inhibited CD95L-induced DISC assembly, caspase activation and apoptosis. We showed that inhibition of procaspase-8 type I interactions by mutations not only diminished procaspase-8 recruitment to the DISC but also destabilized the FADD core of DED filaments. Taken together, this study offers insights to develop strategies to target DED proteins, which may be considered in diseases associated with cell death and inflammation.

2.
Trends Cancer ; 8(3): 190-209, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34973957

RESUMEN

The extrinsic pathway is mediated by death receptors (DRs), including CD95 (APO-1/Fas) or TRAILR-1/2. Defects in apoptosis regulation lead to cancer and other malignancies. The master regulator of the DR networks is the cellular FLICE inhibitory protein (c-FLIP). In addition to its key role in apoptosis, c-FLIP may exert other cellular functions, including control of necroptosis, pyroptosis, nuclear factor κB (NF-κB) activation, and tumorigenesis. To gain further insight into the molecular mechanisms of c-FLIP action in cancer networks, we focus on the structure, isoforms, interactions, and post-translational modifications of c-FLIP. We also discuss various avenues to target c-FLIP in cancer cells for therapeutic benefit.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Neoplasias , Apoptosis/fisiología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal , Receptor fas/genética , Receptor fas/metabolismo
3.
J Vis Exp ; (174)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34398143

RESUMEN

Extrinsic apoptosis is mediated by the activation of death receptors (DRs) such as CD95/Fas/APO-1 or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptor 1/receptor 2 (TRAIL-R1/R2). Stimulation of these receptors with their cognate ligands leads to the assembly of the death-inducing signaling complex (DISC). DISC comprises DR, the adaptor protein Fas-associated protein with death domain (FADD), procaspases-8/-10, and cellular FADD-like interleukin (IL)-1ß-converting enzyme-inhibitory proteins (c-FLIPs). The DISC serves as a platform for procaspase-8 processing and activation. The latter occurs via its dimerization/oligomerization in the death effector domain (DED) filaments assembled at the DISC. Activation of procaspase-8 is followed by its processing, which occurs in several steps. In this work, an established experimental workflow is described that allows the measurement of DISC formation and the processing of procaspase-8 in this complex. The workflow is based on immunoprecipitation techniques supported by western blot analysis. This workflow allows careful monitoring of different steps of procaspase-8 recruitment to the DISC and its processing and is highly relevant for investigating molecular mechanisms of extrinsic apoptosis.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Receptor fas , Apoptosis , Caspasa 8/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Transducción de Señal , Receptor fas/metabolismo
4.
Sci Rep ; 10(1): 20823, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257694

RESUMEN

The development of efficient combinatorial treatments is one of the key tasks in modern anti-cancer therapies. An apoptotic signal can either be induced by activation of death receptors (DR) (extrinsic pathway) or via the mitochondria (intrinsic pathway). Cancer cells are characterized by deregulation of both pathways. Procaspase-8 activation in extrinsic apoptosis is controlled by c-FLIP proteins. We have recently reported the small molecules FLIPinB/FLIPinBγ targeting c-FLIPL in the caspase-8/c-FLIPL heterodimer. These small molecules enhanced caspase-8 activity in the death-inducing signaling complex (DISC), CD95L/TRAIL-induced caspase-3/7 activation and subsequent apoptosis. In this study to increase the pro-apoptotic effects of FLIPinB/FLIPinBγ and enhance its therapeutic potential we investigated costimulatory effects of FLIPinB/FLIPinBγ in combination with the pharmacological inhibitors of the anti-apoptotic Bcl-2 family members such as ABT-263 and S63845. The combination of these inhibitors together with FLIPinB/FLIPinBγ increased CD95L-induced cell viability loss, caspase activation and apoptosis. Taken together, our study suggests new approaches for the development of combinatorial anti-cancer therapies specifically targeting both intrinsic and extrinsic apoptosis pathways.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Compuestos de Anilina/farmacología , Caspasa 8/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Sistemas de Liberación de Medicamentos , Proteína Ligando Fas/farmacología , Células HeLa , Humanos , Sulfonamidas/farmacología
5.
Arch Clin Neuropsychol ; 17(6): 567-81, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14591856

RESUMEN

The Verbal Paired Associates (VPA) subtest from the Wechsler Memory Scale-III (WMS-III) is one of the most widely used instruments for assessing explicit episodic memory performance. The normative data for the VPA subtest in the WMS-III manual show clear evidence of performance ceiling effects that limit the usefulness of this instrument. For this reason, we developed a new 15-item VPA test and we report normative data obtained from a partially stratified sample of 351 healthy adults between 18 and 91 years of age. Only a small fraction of participants obtained perfect scores on our new Paired Associates test. The results show the expected large age-related decline in memory acquisition, indexed by performance on the first study test trial, together with a much smaller age effect on learning across trials. The results also show that performance on the Paired Associates test is related to education, verbal IQ, and to a lesser extent, participants' sex. We provide various equations for precise predictions of Paired Associates test performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA