Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(9): e1012499, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39292703

RESUMEN

Broadly reactive antibodies that target sequence-diverse antigens are of interest for vaccine design and monoclonal antibody therapeutic development because they can protect against multiple strains of a virus and provide a barrier to evolution of escape mutants. Using LIBRA-seq (linking B cell receptor to antigen specificity through sequencing) data for the B cell repertoire of an individual chronically infected with human immunodeficiency virus type 1 (HIV-1), we identified a lineage of IgG3 antibodies predicted to bind to HIV-1 Envelope (Env) and influenza A Hemagglutinin (HA). Two lineage members, antibodies 2526 and 546, were confirmed to bind to a large panel of diverse antigens, including several strains of HIV-1 Env, influenza HA, coronavirus (CoV) spike, hepatitis C virus (HCV) E protein, Nipah virus (NiV) F protein, and Langya virus (LayV) F protein. We found that both antibodies bind to complex glycans on the antigenic surfaces. Antibody 2526 targets the stem region of influenza HA and the N-terminal domain (NTD) region of SARS-CoV-2 spike. A crystal structure of 2526 Fab bound to mannose revealed the presence of a glycan-binding pocket on the light chain. Antibody 2526 cross-reacted with antigens from multiple pathogens and displayed no signs of autoreactivity. These features distinguish antibody 2526 from previously described glycan-reactive antibodies. Further study of this antibody class may aid in the selection and engineering of broadly reactive antibody therapeutics and can inform the development of effective vaccines with exceptional breadth of pathogen coverage.


Asunto(s)
Anticuerpos Antivirales , Reacciones Cruzadas , Inmunoglobulina G , Polisacáridos , Humanos , Polisacáridos/inmunología , Inmunoglobulina G/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , VIH-1/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , COVID-19/inmunología , COVID-19/virología , Anticuerpos Monoclonales/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología
2.
Vaccines (Basel) ; 12(7)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39066344

RESUMEN

The hemagglutinin (HA) and neuraminidase (NA) surface proteins are the primary and secondary immune targets for most influenza vaccines. In this study, H2, H5, H7, N1, and N2 antigens designed by the computationally optimized broadly reactive antigen (COBRA) methodology were incorporated into an adjuvant-formulated vaccine to assess the protective efficacy and immune response against A/Hong Kong/125/2017 H7N9 virus challenge in pre-immune mice. The elicited antibodies bound to H2, H5, H7, N1, and N2 wild-type antigens; cH6/1 antigens; and cH7/3 antigens, with hemagglutinin inhibition (HAI) activity against broad panels of the H2Nx, H5Nx, and H7Nx influenza strains. Mice vaccinated with the pentavalent COBRA HA/NA vaccine showed little to no weight loss, no clinical signs of diseases, and were protected from mortality when challenged with the lethal H7N9 virus. Virus titers in the lungs of vaccinated mice were lower and cleared more rapidly than in mock-vaccinated mice. Some vaccinated mice showed no detectable lung injury or inflammation. Antibody-secreting cells were significantly increased in COBRA-vaccinated mice, with higher total Ig and H7-specific ASC. Thus, the combination of H2, H5, H7, N1, and N2 COBRA antigens presents a potential for the formulation of a universal influenza virus vaccine.

3.
Vaccines (Basel) ; 10(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36016202

RESUMEN

Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune response, especially in high-risk populations. To achieve this second objective, the administration of adjuvanted influenza vaccines has been considered. In this regard, the monitoring and characterization of the antibody response associated with the administration of adjuvanted vaccines has been evaluated in this study in order to shed light on the kinetic, magnitude and subclass usage of antibody secreting cells (ASCs) as well as of circulating antigen-specific serum antibodies. Specifically, we utilized the DBA/2J mouse model to assess the kinetic, magnitude and IgG subclass usage of the antibody response following an intramuscular (IM) or intraperitoneal (IP) immunization regimen with AddaVax-adjuvanted bivalent H1N1 and H3N2 computationally optimized broadly reactive antigen (COBRA) influenza recombinant hemagglutinins (rHAs). While the serological evaluation revealed a homogeneous kinetic of the antibody response, the detection of the ASCs through a FluoroSpot platform revealed a different magnitude, subclass usage and kinetic of the antigen-specific IgG secreting cells peaking at day 5 and day 9 following the IP and IM immunization, respectively.

4.
J Virol ; 95(23): e0237920, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34523961

RESUMEN

Influenza remains one of the most contagious infectious diseases. Approximately, 25 to 50 million people suffer from influenza-like illness in the United States annually, leading to almost 1 million hospitalizations. Globally, the World Health Organization (WHO) estimates 250,000 to 500,000 mortalities associated with secondary respiratory complications due to influenza virus infection every year. Currently, seasonal vaccination represents the best countermeasure to prevent influenza virus spread and transmission in the general population. However, presently licensed influenza vaccines are about 60% effective on average, and their effectiveness varies from season to season and among age groups, as well as between different influenza subtypes within a single season. The hemagglutination inhibition (HAI) assay represents the gold standard method for measuring the functional antibody response elicited following standard-of-care vaccination, along with evaluating the efficacy of under-development influenza vaccines in both animal models and clinical trial settings. However, using the classical HAI approach, it is not possible to dissect the complexities of variable epitope recognition within a polyclonal antibody response. In this paper, we describe a straightforward competitive HAI-based method using a combination of influenza virus and recombinant hemagglutinin (HA) proteins to dissect the HAI functional activity of HA-specific antibody populations in a single assay format. IMPORTANCE The hemagglutination inhibition (HAI) assay is a well-established and reproducible method that quantifies functional antibody activity against influenza viruses and, in particular, the capability of an antibody formulation to inhibit the binding of hemagglutinin (HA) to sialic acid. However, the HAI assay does not provide full insights on the breadth and epitope recognition of the antibody formulation, especially in the context of polyclonal sera, where multiple antibody specificities contribute to the overall observed functional activity. In this report we introduce the use of Y98F point-mutated recombinant HA (HAΔSA) proteins, which lack sialic acid binding activity, in the context of the HAI assay as a means to absorb out certain HA-directed (i.e., strain-specific or cross-reactive) antibody populations. This modification to the classical HAI assay, referred to as the competitive HAI assay, represents a new tool to dissect the magnitude and breadth of polyclonal antibodies elicited through vaccination or natural infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Pruebas de Inhibición de Hemaglutinación/métodos , Gripe Humana/diagnóstico , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Reacciones Cruzadas , Modelos Animales de Enfermedad , Epítopos , Hurones/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/inmunología , Vacunación
5.
Macromol Rapid Commun ; 40(2): e1800314, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29999558

RESUMEN

Heparin plays a significant role in wound healing and tissue regeneration applications, through stabilization of fibroblast growth factors (FGF). Risks associated with batch-to-batch variability and contamination from its biological sources have led to the development of synthetic, highly sulfonated polymers as promising heparin mimics. In this work, a systematic study of an aqueous polymerization-induced self-assembly (PISA) of styrene from poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) macro reversible addition-fragmentation chain transfer (macro-RAFT) agents produced a variety of spherical heparin-mimicking nanoparticles, which were further characterized with light scattering and electron microscopy techniques. None of the nanoparticles tested showed toxicity against mammalian cells; however, significant hemolytic activity was observed. Nonetheless, the heparin-mimicking nanoparticles outperformed both heparin and linear P(AMPS) in cellular proliferation assays, suggesting increased bFGF stabilization efficiencies, possibly due to the high density of sulfonated moieties at the particle surface.


Asunto(s)
Técnicas de Química Sintética/métodos , Heparina/química , Nanopartículas/química , Polimerizacion , Polímeros/química , Ácidos Sulfónicos/química , Animales , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Dispersión Dinámica de Luz , Hemólisis/efectos de los fármacos , Heparina/síntesis química , Ratones , Microscopía Electrónica de Transmisión , Modelos Químicos , Estructura Molecular , Células 3T3 NIH , Nanopartículas/ultraestructura , Polímeros/síntesis química , Estireno/química , Ácidos Sulfónicos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA