Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trends Plant Sci ; 28(1): 31-42, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36114125

RESUMEN

Interactions among plants have been long recognized as a major force driving plant community dynamics and crop yield. Surprisingly, our knowledge of the ecological genetics associated with variation of plant-plant interactions remains limited. In this opinion article by scientists from complementary disciplines, the international PLANTCOM network identified four timely questions to foster a better understanding of the mechanisms mediating plant assemblages. We propose that by identifying the key relationships among phenotypic traits involved in plant-plant interactions and the underlying adaptive genetic and molecular pathways, while considering environmental fluctuations at diverse spatial and time scales, we can improve predictions of genotype-by-genotype-by-environment interactions and modeling of productive and stable plant assemblages in wild habitats and crop fields.


Asunto(s)
Ecosistema , Plantas , Genotipo , Fenotipo , Plantas/genética
2.
Plants (Basel) ; 10(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834846

RESUMEN

Plasticity of plant architecture is a promising lever to increase crop resilience to biotic and abiotic damage. Among the main drivers of its regulation are the spectral signals which occur via photomorphogenesis processes. In particular, branching, one of the yield components, is responsive to photosynthetic photon flux density (PPFD) and to red to far-red ratio (R:FR), both signals whose effects are tricky to decorrelate in the field. Here, we developed a device consisting of far-red light emitting diode (LED) rings. It can reduce the R:FR ratio to 0.14 in the vicinity of an organ without changing the PPFD in outdoor high irradiance fluctuating conditions, which is a breakthrough as LEDs have been mostly used in non-fluctuant controlled conditions at low irradiance over short periods of time. Applied at the base of rapeseed stems during the whole bolting-reproductive phase, LightCue induced an expected significant inhibitory effect on two basal targeted axillary buds and a strong unexpected stimulatory effect on the overall plant aerial architecture. It increased shoot/root ratio while not modifying the carbon balance. LightCue therefore represents a promising device for progress in the understanding of light signal regulation in the field.

3.
PLoS One ; 16(5): e0250966, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014943

RESUMEN

In the emerging new agricultural context, a drastic reduction in fertilizer usage is required. A promising way to maintain high crop yields while reducing fertilizer inputs is to breed new varieties with optimized root system architecture (RSA), designed to reach soil resources more efficiently. This relies on identifying key traits that underlie genotypic variability and plasticity of RSA in response to nutrient availability. The aim of our study was to characterize the RSA plasticity in response to nitrogen limitation of a set of contrasted oilseed rape genotypes, by using the ArchiSimple model parameters as screening traits. Eight accessions of Brassica napus were grown in long tubes in the greenhouse, under two contrasting levels of nitrogen availability. After plant excavation, roots were scanned at high resolution. Six RSA traits relative to root diameter, elongation rate and branching were measured, as well as nine growth and biomass allocation traits. The plasticity of each trait to nitrogen availability was estimated. Nitrogen-limited plants were characterized by a strong reduction in total biomass and leaf area. Even if the architecture traits were shown to be less plastic than allocation traits, significant nitrogen and genotype effects were highlighted on each RSA trait, except the root minimal diameter. Thus, the RSA of nitrogen-limited plants was primarily characterised by a reduced lateral root density, a smaller primary root diameter, associated with a stronger root dominance. Among the RSA traits measured, the inter-branch distance showed the highest plasticity with a level of 70%, in the same range as the most plastic allocation traits. This work suggests that lateral root density plays the key role in the adaptation of the root system to nitrogen availability and highlights inter-branch distance as a major target trait for breeding new varieties, better adapted to low input systems.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Brassica napus/genética , Raíces de Plantas/genética , Brassica napus/metabolismo , Fertilizantes , Variación Genética/genética , Genotipo , Nitrógeno/metabolismo , Fenotipo , Fósforo/metabolismo , Fitomejoramiento/métodos , Raíces de Plantas/crecimiento & desarrollo , Aceite de Brassica napus , Suelo/química
4.
Front Plant Sci ; 12: 641459, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054891

RESUMEN

Maintaining seed yield under low N inputs is a major issue for breeding, which requires thoroughly exploiting the genetic diversity of processes related to Nitrogen Use Efficiency (NUE). However, dynamic analysis of processes underlying genotypic variations in NUE in response to N availability from sowing to harvest are scarce, particularly at the whole-plant scale. This study aimed to dynamically decipher the contributions of Nitrogen Uptake Efficiency (NUpE) and Nitrogen Utilization Efficiency (NUtE) to NUE and to identify traits underlying NUpE genetic variability throughout the growth cycle of rapeseed. Three experiments were conducted under field-like conditions to evaluate seven genotypes under two N conditions. We developed NUE_DM (ratio of total plant biomass to the amount of N available) as a new proxy of NUE at harvest, valid to discriminate genotypes from the end of inflorescence emergence, and N conditions as early as the beginning of stem elongation. During autumn growth, NUpE explained up to 100% of variations in NUE_DM, validating the major role of NUpE in NUE shaping. During this period, under low N conditions, up to 53% of the plant nitrogen was absorbed and NUpE genetic variability resulted not from differences in Specific N Uptake but in fine-root growth. NUtE mainly contributed to NUE_DM genotypic variation during the reproductive phase under high-N conditions, but NUpE contribution still accounted for 50-75% after flowering. Our study highlights for the first time NUpE and fine-root growth as important processes to optimize NUE, which opens new prospects for breeding.

5.
Trends Plant Sci ; 22(7): 610-623, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28587758

RESUMEN

Epigenetic variations are involved in the control of plant developmental processes and participate in shaping phenotypic plasticity to the environment. Intense breeding has eroded genetic diversity, and epigenetic diversity now emerge as a new source of phenotypic variations to improve adaptation to changing environments and ensure the yield and quality of crops. Here, we review how the characterization of the stability and heritability of epigenetic variations is required to drive breeding strategies, which can be assisted by process-based models. We propose future directions to hasten the elucidation of complex epigenetic regulatory networks that should help crop modelers to take epigenetic modifications into account and assist breeding strategies for specific agronomical traits.


Asunto(s)
Epigénesis Genética/genética , Plantas/genética , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Cruzamiento
6.
J Exp Bot ; 61(8): 2157-69, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20400530

RESUMEN

Root system architecture adapts to low nitrogen (N) nutrition. Some adaptations may be mediated by modifications of carbon (C) fluxes. The objective of this study was to test the hypothesis that changes in root system architecture under different N regimes may be accounted for by using simple hypotheses of C allocation within the root system of Arabidopsis thaliana. With that purpose, a model during vegetative growth was developed that predicted the main traits of root system architecture (total root length, lateral root number, and specific root length). Different experimental data sets crossing three C levels and two N homogenous nutrition levels were generated. Parameters were estimated from an experiment carried out under medium C and high N conditions. They were then checked under other CxN conditions. It was found that the model was able to simulate correctly C effects on root architecture in both high and low N nutrition conditions, with the same parameter values. It was concluded that C flux modifications explained the major part of root system adaptation to N supply, even if they were not sufficient to simulate some changes, such as specific root length.


Asunto(s)
Arabidopsis/química , Arabidopsis/crecimiento & desarrollo , Carbono/metabolismo , Nitrógeno/metabolismo , Arabidopsis/metabolismo , Cinética , Modelos Biológicos , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
7.
J Exp Bot ; 59(4): 779-91, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18304979

RESUMEN

In a low-input agricultural context, plants facing temporal nutrient deficiencies need to be efficient. By comparing the effects of NO(3)(-)-starvation in two lines of Arabidopsis thaliana (RIL282 and 432 from the Bay-0xShahdara population), this study aimed to screen the physiological mechanisms allowing one genotype to withstand NO(3)(-)-deprivation better than another and to rate the relative importance of processes such as nitrate uptake, storage, and recycling. These two lines, chosen because of their contrasted shoot N contents for identical shoot biomass under N-replete conditions, underwent a 10 d nitrate starvation after 28 d of culture at 5 mM NO(3)(-). It was demonstrated that line 432 coped better with NO(3)(-)-starvation, producing higher shoot and root biomass and sustaining maximal growth for a longer time. However, both lines exhibited similar features under NO(3)(-)-starvation conditions. In particular, the nitrate pool underwent the same drastic and early depletion, whereas the protein pool was increased to a similar extent. Nitrate remobilization rate was identical too. It was proportional to nitrate content in both shoots and roots, but it was higher in roots. One difference emerged: line 432 had a higher nitrate content at the beginning of the starvation phase. This suggests that to overcome NO(3)(-)-starvation, line 432 did not directly rely on the N pool composition, nor on nitrate remobilization efficiency, but on higher nitrate storage capacities prior to NO(3)(-)-starvation. Moreover, the higher resistance of 432 corresponded to a higher nitrate uptake capacity and a 2-9-fold higher expression of AtNRT1.1, AtNRT2.1, and AtNRT2.4 genes, suggesting that the corresponding nitrate transporters may be preferentially involved under fluctuating N supply conditions.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Transporte Biológico Activo/fisiología , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Isótopos de Nitrógeno , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Inanición , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA